- ﬁ PRU Cookbook

BeagleBoard.org Foundation
Oct 18, 2024

Table of contents

1 Case Studies - Introduction 3
1.1 Robotics Control Library o e e e e e e e e e e e e e e 4
1.2 Controlling Eight Servos e e e e e e e e 4

1.2.1 Problem e e e e e e e e 4
1.2.2 Solution o e e e e e e e e e e e 4
1.2.3 DIiSCUSSION . . v v v v e 6
1.2.4 PRUregistertopintable e 6
1.3 Controlling Individual Servos e e e e e e e e 6
1.3.1 Problem e e e e e e e 6
1.3.2 Solution e e e e e e e e e e 6
1.4 Controlling More Than Eight Channels e e e e e 7
1.4.1 Problem e e e e e e 7
1.4.2 Solution e 7
1.5 Reading Hardware Encoders e e e e e e e e 7
1.5.1 Problem e e e e e e e e 7
1.5.2 Solution o e e e e e e e e e e 7
1.5.3 eQEPto pin Mmapping o i e e e e e e e e e e e e e e e e 7
1.5.4 Problem e e e e e 7
1.5.5 Solution L e e e e e e e 8
1.6 BeagleLogic - a 14-channel Logic Analyzer e 8
1.6.1 Problem e e e e e e e 8
1.6.2 Solution o e e e e e e e e e e e e e e 8
1.6.3 DISCUSSION v v o e e e e e e e e e e e e 9
1.7 NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon Christmas) 10
1.7.1 Problem e e e e e e e e 10
1.7.2 Solution o e e e e e e e e e e e 10
1.7.3 Hardware o e e e e e e e e e e e e e e e e e e 10
1.7.4 Software Setup L e e e e e e e e e e e 11
1.7.5 Controlling NeoPixels e e e e e e e e e e 12
1.8 RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 17
1.8.1 Problem e e e e e e 17
1.8.2 Solution L e e e e e e e e e e 18
1.8.3 Hardware e e e e e e e e e e e e e e e e 18
1.8.4 Software e e e e e e e e 18
1.8.5 ArduPilot e e e 35

2 Getting Started 37

2.1 SelectingaBeagle L 37
2.1.1 Problem e e e e e e e e e 37
2.1.2 Solution e e e e e e e e e e 37
2.1.3 DISCUSSION .« v v v v v v e e e e e e e e e e e e e e e e e 37

2.2 Installing the Latest OSon Your Bone o o o i i e 41
2.2.1 Problem e e e e e e e e e e 41
2.2.2 Solution . . . e e e e e e e e e 41

2.3 Flashinga MicroSD Card 0 . i i e e e e e e e e e e e e e e e 43
2.3.1 Problem e e e e e e 43
2.3.2 Solution e e e 43

2.4 Visual Studio Code IDE e e e e e e e e e e e e e 43

2.4.1 Problem e e e e 43
2.4.2 Solution e e e e e e e e e 43
2.5 Getting Example Code L e e 45
2.5.1 Problem e e e e e e e e e e e e 45
2.5.2 Solution e e e e e e e e e e e 46
2.6 Blinkingan LED e e e e e e e e e e e e e e e e 46
2.6.1 Problem e e e e e e e e e 46
2.6.2 Solution e e e e e e e e e 46
Running a Program; Configuring Pins 49
3.1 Getting Example Code L e e e e e e e e e e 49
3.1.1 Problem e e e e e e e e e e e e e e 49
3.1.2 Solution . . . o e e e e 49
3.2 Compiling with clpruand Inkpru e 50
3.2.1 Problem e e e e e e e 50
3.2.2 Solution . . . e e e e e e e e e 50
3.3 Making sure the PRUs are configured e e e 50
3.3.1 Problem e e e e e e e e 50
3.3.2 Solution . . . L e e e e e e e e e e e 50
3.4 Compilingand Running L e e e e e e e e e 51
3.4.1 Problem e e e e e e e e e 51
3.4.2 Solution e e e e e e e e e e 51
3.4.3 DISCUSSION . v v v v vt e e e e e e e e e e e e e e e e e e 52
3.5 Stopping and Startingthe PRU e e e e e e 53
3.5.1 Problem e e e e e e 53
3.5.2 Solution e e e e e e e e e e 53
3.6 The Standard Makefile e e e e e e e e 53
3.6.1 Problem e e e e e e e e e e e e e 53
3.6.2 Solution L e e e e e e e e 53
3.6.3 DIiSCUSSION v e e e e e e e e e e e e e e e e e 53
3.7 The Linker Command File - am335x_pru.cmd e e 54
3.7.1 Problem e e e e e e e e e e e 54
3.7.2 Solution e e e e e e e e e e e 54
3.7.3 DISCUSSION . v v v v v vt e e e e e e e e e e e e e e e 56
3.8 Loading Firmware e e e e e e e e e e e e e 56
3.8.1 Problem e e e e e e e 57
3.8.2 Solution e e e e e e e e 57
3.8.3 DISCUSSION . . . v v v o e 57
3.9 Configuring Pins for Controlling Servos e e e e e e e 57
3.9.1 Problem e e e e 57
3.9.2 Solution e e e e e e e e e 58
3.9.3 DISCUSSION . . . v v v e e e e e e e e e e e e e e e e 58
3.10 Configuring Pins for Controlling Encoders« 0 i i i i i s e e e e e e e e 58
3.10.1 Problem L e e e e e e e e e e e e e e e 58
3.10.2 Solution e e e e e e e e e e 58
3.10.3 DiSCUSSION v v e 59
Debugging and Benchmarking 61
4.1 DebuggingviaanLED e e e e e e 61
4. 1.1 Problem e e e e e e e e e e e e 61
4.1.2 Solution e e e e e e e e e e e 61
4.1.3 DISCUSSION . v v v v v v s e e e e e e e e e e e 61
4.2 dmesg HW L e e e e e e 61
4.2.1 Problem e e e e e e e e 61
4.2.2 Solution L e e e e e e e e e 62
4.3 dmesg -HW . . . L e e e e e e e e e e e e e e 62
4.4 prudebug - A Simple Debugger forthe PRU e 62
4.4.1 Problem e e e 62

4.4.2 Solution L e e e e e e e e e e e e 62

4.4.3 DISCUSSION . v v v v vt e e e e e e e e e e e e e e e e e e 63
4.5 UART . . e e e e e e e e e 65
4.5.1 Problem e e e e e e 65
4.5.2 Solution L e e e e e e e e e e e 65
4.5.3 DISCUSSION .+ v v v v et e 67
4.5.4 Details. e e e e e e e 67
4.5.5 config-pin L e e e e e e e e e 68
Building Blocks - Applications 81
5.1 Memory Allocation L e e 81
5.1.1 Problem o e e e e e e e e e 81
5.1.2 Solution e e e e e e e e e e e e e e 81
5.1.3 DIiSCUSSION o e e e e e e e e e e e e e e e 83
5.2 Auto Initialization of built-in LED Triggers o o 0 i e e 86
5.2.1 Problem e e e e e e e 86
5.2.2 Solution e e e e e e e e 86
5.2.3 DIiSCUSSION v v o e e e e e e e e e e e e e e e e e e 87
5.3 PWMGenerator o o e e e e e e e e e e e e 87
5.3.1 Problem e e e e e e e e 87
5.3.2 Solution e e e e e e e e 88
5.3.3 DIiSCUSSION v v e e e e e e e e e e e e e e 89
5.4 Controlling the PWM FrequencCy o o v i i e e e e e e e e e e e e e e 94
5.4.1 Problem L e e e e e e e e e 94
5.4.2 Solution L e e e e e e e e e e 94
5.5 Loop Unrolling for Better Performance e e e e e e 98
5.5.1 Problem e e e e e e e e 100
5.5.2 Solution e e e e e e e e e 100
5.5.3 DIiSCUSSION . . . v v v e 102
5.6 Making All the Pulses Start atthe Same Time 102
5.6.1 Problem e e e e e e e e e 102
5.6.2 Solution L e e e e e e e 102
5.6.3 DIiSCUSSION v v v e e e e e e e e e e e e e e e e e e 104
5.7 Adding More Channels via PRU 1 e e e e e e e e e e e e e 104
5.7.1 Problem e e e e e e e e e e 104
5.7.2 Solution L e e e e e e e e e e e e 104
5.7.3 DISCUSSION o e e e e e e e e e e e e e e 108
5.8 Synchronizing TWo PRUS e e e e 108
5.8.1 Problem L e e e e e e e e 108
5.8.2 Solution L e e e e e e e e e e e e 108
5.8.3 DIiSCUSSION . & . v v v v o e 113
5.9 Reading an Input at RegulariIntervals 115
5.9.1 Problem e e e e e e e e e 115
5.9.2 Solution e e e e e e e e e 115
5.9.3 DIiSCUSSION v 0 e 116
5.10 Analog Wave Generator 0 i e e e e e e e e e e e e e e e e 116
5.10.1 Problem L e e e e e e e e e 116
5.10.2 Solution L e e e e e e e e e 116
5.10.3 DiSCUSSION . . . v v v o e e s e e e e e e e e e e e e e e e e e 118
5.11 WS2812 (NeoPixel) driver o e e e e e e e e e e e e e e 133
5.11.1 Problem L e e e e e e e e e e e e 133
5.11.2 Solution L e e e e e e e e e e e 133
5.11.3 DiSCUSSION v v e 134
5.12 Setting NeoPixels to Different Colors o 0 e 135
5.12.1 Problem e e e e e e e e e e e e 135
5.12.2 Solution L e e e e e e e e e e e e e e e 135
5.12.3 DiSCUSSION v o e o e e e e e e e e e e e e e e e e 137
5.13 Controlling Arbitrary LEDS e e e e e e e e e e e 138

5.13.1 Problem o e e e e e e e e e 138

5.13.2S0lution e e e e e e e e e e 138
5.13.3 Ne03 Video o o o e e e e e e e e e 139
5.13.4 DiSCUSSION . . . v v v o e e e e e e e e e e e e e e e e e 140

5.14 Controlling NeoPixels Through a Kernel Driver 0 v v i i e e i e e e 140
5.14.1 Problem e e e e e e e e e e e e e e 140
5.14.2S0lution e e e e e 140
5.14.3 DiSCUSSION .« . v v v v o e 143

5.15 RGB LED Matrix - No Integrated Drivers 0 0 0 0 e 145
5.15.1 Problem e e e e e e e e e e 145
5.15.2 Solution L e e e e e e e e e e e e e 145
5.15.3 DiSCUSSION .« v v v v v ot e e e e e e e e e e e e e e e e e 150

5.16 Compiling and Inserting rpmsg_Pru o o o i e e e e e e e e e e e e e 153
5.16.1 Problem L e e e e e e e e e e 154
5.16.2 Solution e e e e e e e e 154

5.17 Copyright o e e e e e e e e e e e e e e 154
6 Accessing More I/0 157
6.1 Editing /boot/uEnv.txt to Access the P8 HeaderontheBlack 157
6.1.1 Problem e e e e e e 157
6.1.2 Solution L e 157

6.2 ACCESSING gPIO . . & v v e e e e e e 158
6.2.1 Problem e e e e e e e e e e e e e e 158
6.2.2 Solution L e e e e e e 158
6.2.3 DISCUSSION o o e e e e e e 160
6.2.4 How fastcanitgo? e 160

6.3 Configuring for UIO Instead of RemoteProc oo 162
6.3.1 Problem e e e e e e e e e 162
6.3.2 Solution L e e e e e e e e e e e e e e 162

6.4 Converting pasm Assembly Codetoclpru e e 163
6.4.1 Problem L e e e e e 163
6.4.2 Solution e e e e e e e 163
6.4.3 DISCUSSION . . . v v v e 163

7 More Performance 165
7.1 Calling Assembly from C e e e e e e e e e e e e 165
7.1.1 Problem e e e e e e e 165
7.1.2 Solution L e e e e e e e e 165
7.1.3 DISCiSSION o o e e e e e e e e e e e 167

7.2 Returning a Value from Assembly L 168
7.2.1 Problem e e e e e e e e e e e e e e 168
7.2.2 SolUution L e e e e e e e e e e e 168

7.3 Using the Built-In Counter for Timing o 0 i e e s e e e 169
7.3.1 Problem L e e e e e e e e 169
7.3.2 Solution e e e e e e e e 169
7.3.3 DISCISSION . . . v o e 170

7.4 Xout and Xin - Transferring Between PRUS i 0 v v i i i e e 172
7.4.1 Problem e e e e e e 172
7.4.2 Solution L e e e e e e e e e e 172
7.4.3 DIiSCUSSION . . . v v v e e s e e e e e e e e e e e e e e e 174

8 Moving to the BeagleBone Al 177
8.1 Moving from two to four PRUS e e e e e e e e 177
8.1.1 Problem e e e e e e e e e e e e e e e 177
8.1.2 Solution e e e e e e 177
8.1.3 DISCISSION o e e e e e e e e e e e 177

8.2 Seeing how pins are configured L L 180
8.2.1 Problem e e e e e e e e e 180
8.2.2 Solution L e e e e e e e e e e 180

8.3 Configuring pins on the Al via devicetrees o 0 0 v i 181

8.3.1 Problem e e e e e e 181

8.3.2 Solution e e e e e e 181

8.3.3 DISCiSSION e e e e e e e e e e e e e e e 181

8.4 Usingthe PRU PINS o e e e e e e e e e e e e e e e e 182
8.4.1 Problem e e e e e e e e e e e e e e e 182

8.4.2 Solution e e e e e e e 182

8.4.3 DISCiSSION e e e e e e e e e e e e e 183

9 PRU Projects 185

PRU Cookbook

Contributors
e Author: Mark A. Yoder

e Book revision: v2.0 beta

Outline

A cookbook for programming the PRUs in C using remoteproc and compiling on the Beagle

Table of contents 1

mailto:Mark.A.Yoder@Rose-Hulman.edu

PRU Cookbook

2 Table of contents

Chapter 1

Case Studies - Introduction

It's an exciting time to be making projects that use embedded processors. Make:’s Makers’ Guide to Boards
shows many of the options that are available and groups them into different types. Single board computers
(SBCs) generally run Linux on some sort of ARM processor. Examples are the BeagleBoard and the Raspberry
Pi. Another type is the microcontroller, of which the Arduino is popular.

The SBCs are used because they have an operating system to manage files, I/O, and schedule when things
are run, all while possibly talking to the Internet. Microcontrollers shine when things being interfaced require
careful timing and can’t afford to have an OS preempt an operation.

But what if you have a project that needs the flexibility of an OS and the timing of a microcontroller? This
is where the BeagleBoard excels since it has both an ARM procssor running Linux and two' Programmable
Real-Time Units (PRUs). The PRUs have 32-bit cores which run independently of the ARM processor, therefore
they can be programmed to respond quickly to inputs and produce very precisely timed outputs.

There are many Projects that use the PRU. They are able to do things that can’t be done with just a SBC or just
a microcontroller. Here we present some case studies that give a high-level view of using the PRUs. In later
chapters you will see the details of how they work.

Here we present:

Todo: Switch from LEDscape to FPP

¢ Robotics Control Library

* Beaglelogic

* NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)
* RGB LED Matrix (Falcon Christmas)

¢ simpPRU - A python-like language for programming the PRUs

* MachineKit

¢ BeaglePilot

¢ BeagleScope

The following are resources used in this chapter.

Resources
¢ PocketBeagle System Reference Manual

* BeagleBone Black P8 Header Table

1 Four if you are on the BeagleBone Al

https://makezine.com/comparison/boards/
https://www.arm.com/
https://www.arduino.cc/
https://beagleboard.org/librobotcontrol
https://github.com/abhishek-kakkar/BeagleLogic/wiki
http://falconchristmas.com
http://falconchristmas.com
https://github.com/VedantParanjape/simpPRU
http://www.machinekit.io/
http://ardupilot.org/dev/docs/beaglepilot.html
https://github.com/ZeekHuge/BeagleScope
https://docs.beagleboard.io/latest/boards/pocketbeagle/original/index.html
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id2

PRU Cookbook

- P8 Header Table from exploringBB
* BeagleBone Black P9 Header Table
- P9 Header Table from exploringBB

* BeagleBone Al System Reference Manual

1.1 Robotics Control Library

Robotics is an embedded application that often requires both an SBC to control the high-level tasks (such as
path planning, line following, communicating with the user) and a microcontroller to handle the low-level tasks
(such as telling motors how fast to turn, or how to balance in response to an IMU input). The EduMIP balancing
robot demonstrates that by using the PRU, the Blue can handle both the high and low -level tasks without an
additional microcontroller. The EAuMIP is shown in Blue balancing.

The Robotics Control Library is a package that is already installed on the Beagle that contains a C library and
example/testing programs. It uses the PRU to extend the real-time hardware of the Bone by adding eight
additional servo channels and one addition real-time encoder input.

The following examples show how easy it is to use the PRU for robotics.

1.2 Controlling Eight Servos

1.2.1 Problem

You need to control eight servos, but the Bone doesn’t have enough pulse width modulation (PWM) channels
and you don’t want to add hardware.

1.2.2 Solution

The Robotics Control Library provides eight additional PWM channels via the PRU that can be used out of the
box.

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given pin.
The Blue has the mux already configured to run these examples. Follow the instructions in Configuring Pins for
Controlling Servos to configure the pins for the Black and the Pocket.

Todo: verify these commands

Just run:

bone$ sudo rc_test_servos -f 10 -p 1.5

The —f 10 says to use a frequency of 10 Hz and the —p 1.5 says to set the position to 1 . 5. The range of
positionsis —1.5to 1.5. Runrc_test_servos -h to see all the options.

bone$ rc_test_servos -h

Options
—-c {channel} Specify one channel from 1-8.

Otherwise all channels will be driven equally
-f {hz} Specify pulse frequency, otherwise 50hz is used

(continues on next page)

4 Chapter 1. Case Studies - Introduction

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id3
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/ai/index.html
https://www.ucsdrobotics.org/edumip
https://www.hackster.io/edumip/edumip-13a29c
https://beagleboard.org/librobotcontrol

PRU Cookbook

Fig. 1.1: Blue balancing

1.2.

Controlling Eight Servos

PRU Cookbook

(continued from previous page)

-p {position} Drive servo to a position between -1.5 & 1.5
-w {width_us} Send pulse width in microseconds (us)

-s {limit} Sweep servo back/forth between +- limit
Limit can be between 0 & 1.5

-r {ch} Use DSM radio channel {ch} to control servo

-h Print this help message

sample use to center servo channel 1:
rc_test_servo -c 1 -p 0.0

1.2.3 Discussion

The BeagleBone Blue sends these eight outputs to its servo channels. The others use the pins shown in the
PRU register to pin table.

1.2.4 PRU register to pin table

PRU pin Blue pin Black pin Pocket pin Al pin
prul_r30_8 1 P8 27 P2.35

prul_r30_10 2 P8 28 P1.35 P9 42
prul_r30_9 3 P8 29 P1.02 P8_14
prul r30 11 4 P8 30 P1.04 P9 27
prul_r30_6 5 P8_39 P8 19
prul_r30_7 6 P8_40 P8_13
prul_r30_4 7 P8_41

prul_r30_5 8 P8_42 P8_18

You can find these details in the
¢ PocketBeagle pinout
* BeagleBone Al PRU pins

Be default the PRUs are already loaded with the code needed to run the servos. All you have to do is run the
command.

1.3 Controlling Individual Servos

1.3.1 Problem

rc_test_servos is nice, but | need to control the servos individually.

1.3.2 Solution

You can modify rc_test_servos.c. You'll find it on the bone online at https://git.beagleboard.org/
beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test servos.c

Just past line 250 you'lifindawhile loop thathascallsto rc_servo_send_pulse_normalized (ch,
servo_pos) and rc_servo_send_pulse_us (ch, width_us). The first call sets the pulse
width relative to the pulse period; the other sets the width to an absolute time. Use whichever works for you.

6 Chapter 1. Case Studies - Introduction

https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test_servos.c
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test_servos.c

PRU Cookbook

1.4 Controlling More Than Eight Channels

1.4.1 Problem

| need more than eight PWM channels, or | need less jitter on the off time.

1.4.2 Solution

This is a more advanced problem and required reprograming the PRUs. See PWM Generator for an example.

1.5 Reading Hardware Encoders

1.5.1 Problem

| want to use four encoders to measure four motors, but | only see hardware for three.

1.5.2 Solution

The forth encoder can be implemented on the PRU. If you run rc_test_encoders_egep on the Blue,
you will see the output of encoders E1-E3 which are connected to the eEQP hardware.

bone$ rc_test_encoders_egep
Raw encoder positions
E1 | E2 \ E3 |
0 | 0 | 0 |~C
You can also access these hardware encoders on the Black and Pocket using the pins shown in eQEP to pin

mapping.

1.5.3 eQEP to pin mapping

eQEP Blue pin Black pin A Black pin B Al pin A Al pin B Pocket pin A Pocket pin B

0 E1 P9_42B P9 27 P1.31 P2.24
1 E2 P8 _35 P8 33 P8_35 P8 33 P2.10
2 E3 P8_12 P8_11 P8_12 P8_11 P2.24 P2.33
2 P8_41 P8_42 P9 19 P9 41

E4 P8_16 P8_15 P2.09 P2.18
3 P8_25 P8 24
3 P9 42 P9 27

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given pin.
The Blue has the mux already configured to run these examples. Follow the instructions in Configuring Pins for
Controlling Encoders to configure the pins for the Black and the Pocket.

Reading PRU Encoder

1.5.4 Problem

| want to access the PRU encoder.

1.4. Controlling More Than Eight Channels 7

PRU Cookbook

1.5.5 Solution

The forth encoder is implemented on the PRU and accessed with sudo rc_test encoders _pru

Note: This command needs root permission, so the sudo is needed. The default password is temppwd.

Here’s what you will see

bone$ sudo rc_test_encoders_pru
[sudo] password for debian:

Raw encoder position
E4 |
0 |~C

Note: If you aren’t running the Blue you will have to configure the pins as shown in the note above.

1.6 BeaglelLogic - a 14-channel Logic Analyzer
1.6.1 Problem

I need a 100Msps, 14-channel logic analyzer

1.6.2 Solution

BeagleLogic documentation is a 100Msps, 14-channel logic analyzer that runs on the Beagle.

information

BeagleLogic turns your BeagleBone [Black] into a 14-channel, 100Msps Logic Analyzer. Once loaded, it presents
itself as a character device node /dev/beaglelogic. The core of the logic analyzer is the ‘beaglelogic’ kernel
module that reserves memory for and drives the two Programmable Real-Time Units (PRU) via the remoteproc
interface wherein the PRU directly writes logic samples to the System Memory (DDR RAM) at the configured
sample rate one-shot or continuously without intervention from the ARM core.

https://github.com/abhishek-kakkar/BeagleLogic/wiki

The quickest solution is to get the no-setup-required image. It points to an older image (beaglelogic-stretch-
2017-07-13-4gb.img.xz) but should still work.

If you want to be running a newer image, there are instructions on the site for installing BeagleLogic, but | had
to do the additional steps in Installing BeagleLogic.

Todo:

¢ Recheck

Listing 1.1: Installing BeagleLogic

bone$ git clone https://github.com/abhishek-kakkar/BeaglelLogic
bone$ cd BeaglelLogic/kernel
bone$ mv beaglelogic-00A0.dts beaglelogic-00A0.dts.orig
(continues on next page)

8 Chapter 1. Case Studies - Introduction

https://beaglelogic.readthedocs.io/en/latest/
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki/BeagleLogic-%22no-setup-required%22-setup:-Introducing-System-Image!
https://beaglelogic.readthedocs.io/en/latest/install.html

PRU Cookbook

(continued from previous page)
bone$ wget https://gist.githubusercontent.com/abhishek-kakkar/
—~0761ef7b10822cff4b3efd194837f49c/raw/
—eb2cfbcfb59ff5ccb1710dcd7d4a40cc0lcfc050/beaglelogic-00A0.dts
bone$ make overlay
bone$ sudo cp beaglelogic—-00AO0.dtbo /lib/firmware/
bone$ sudo update-initramfs -u -k \ uname -r°
bone$ sudo reboot

Once the Bone has rebooted, browse to 192.168.7.2:4000 where you'll see BeagleLogic Data Capture. Here
you can easily select the sample rate, number of samples, and which pins to sample. Then click Begin Capture
to capture your data, at up to 100 MHz!

< BeagleLogic S W Dad
€ & C |® boneoo, w0 @ v o B el D &:
£ Apps B Rose Bm Travel B Courses B mp3 [ECE205 Bm Linux B Mandi @ AdvancedDat= [scheduleLook: B mp3 @ Linux B Mandi B Home » | W Other bookmarks
BeagleLogic Alogic analyzer on the BeagleBone Black Help About
£ Configuration Rendered in 2347 ms.
Sample 100 MH: v P Begin Capture | % Save Capture | 2 Dump Raw Data

Rate
P8 45

Sample 1000
Limit
P8 46

£2 Input Selection and
Annotation P8_43

PB_19 P8 20 P8 a4
P8 21 P8 22
P8 23 P8 24 D
PB_25 P8 26
- - Requesting capture.
P8 _27 P8 28 Received 4085 bytes of data.
Rendering... This may take a couple of seconds, and make the browser window non-responsive. Please be patient!
P8_29 P8 30
PB_31 P8 32
P8 33 P8 34
PB_35 P8_36
PB_37 P8 38
P8 39 P8 40
P8_41 Pg_42
P843 @ | @ Ps ad

g a5 @ | @ P8 46

Fig. 1.2: BeagleLogic Data Capture

1.6.3 Discussion

Beaglelogic is a complete system that includes firmware for the PRUs, a kernel module and a web interface
that create a powerful 100 MHz logic analyzer on the Bone with no additional hardware needed.

Tip: If you need buffered inputs, consider BeagleLogic Standalone, a turnkey Logic Analyzer built on top of
Beaglelogic.

The kernel interface makes it easy to control the PRUs through the command line. For example

bone$ dd if=/dev/beaglelogic of=mydump bs=1M count=1

will capture a binary dump from the PRUs. The sample rate and number of bits per sample can be controlled
through /sys/.

bone$ cd /sys/devices/virtual/misc/beaglelogic
bone$ 1s
(continues on next page)

1.6. BeaglelLogic - a 14-channel Logic Analyzer 9

http://standalone.beaglelogic.net/en/latest/

PRU Cookbook

(continued from previous page)

buffers filltestpattern power state uevent
bufunitsize lasterror samplerate subsystem

dev memalloc sampleunit triggerflags

bone$ *cat samplerate*

1000

bone$ *cat sampleunit*

8bit

You can set the sample rate by simply writing to samplerate.

bone$ echo 100000000 > samplerate

sysfs attributes Reference has more details on configuring via sysfs.
If you run dmesg —Hw in another window you can see when a capture is started and stopped.

bone$ dmesg —Hw

[Jul25 08:46] misc beaglelogic: capture started with sample rate=100000000._
—Hz, sampleunit=1, triggerflags=0

[+0.086261] misc beaglelogic: capture session ended

Beaglelogic uses the two PRUs to sample at 100Msps. Getting a PRU running at 200Hz to sample at 100Msps
is a slick trick. The Embedded Kitchen has a nice article explaining how the PRUs get this type of performance.

Todo: This is currently broken with the latest version of Falcon Christmas (no F8-B-20.json file)

1.7 NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon
Christmas)

1.7.1 Problem

You have an Adafruit NeoPixel LED string, Adafruit NeoPixel LED matrix or any other type of WS2812 LED and
want to light it up.

Todo: Show how to drive ws2812’s with FPP.

1.7.2 Solution

If you are driving just one string you can write your own code (See W52812 (NeoPixel) driver) If you plan to drive
multiple strings, then consider Falcon Christmas (FPP). FPP can be used to drive both LEDs with an integrated
driver (neopixels) or without an integrated driver. Here we’ll show you how to set up for the integrated drive
and in the next section the no driver LEDs will be show.

1.7.3 Hardware

For this setup we'll wire a single string of NeoPixels to the Beagle. I've attached the black wire on the string to
ground on the Beagle and the red wire to a 3.3V pin on the Beagle. The yellow data in line is attached to P1.31
(I'm using a PocketBeagle.).

How did | know to attach to P1.31? The FalconChristmas git repo (https://github.com/FalconChristmas/fpp) has
files that tell which pins attach to which port. https://github.com/FalconChristmas/fpp/blob/master/capes/pb/
strings/F8-B-20.json has a list of 20 ports and where they are connected. Pin P1.31 appears on line 27. It's the
20th entry in the list. You could pick any of the others if you'd rather.

10 Chapter 1. Case Studies - Introduction

https://beaglelogic.readthedocs.io/en/latest/sysfs_attributes.html
http://theembeddedkitchen.net/beaglelogic-building-a-logic-analyzer-with-the-prus-part-1/449
http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://falconchristmas.com/
https://github.com/FalconChristmas/fpp
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/strings/F8-B-20.json
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/strings/F8-B-20.json

PRU Cookbook

1.7.4 Software Setup

Assuming the PocketBeagle is attached via the USB cable, on your host computer browse to <http://192.168.
7.2/> and you will see Falcon Play Program Control.

@ Falcon Player - FPP x + © - 0 x

&« C A Notsecure | 192.168.7.2/index.php @ % 0O & © * BoDbs £ % &

»-‘_;-x FPP o FPP n A Thu Feb 14

Ide wlan0 05:22:16 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

SCHEDULER STATUS: NEXT PLAYLIST.

& Preview

Idle No playlist scheduled.

Player Status: Idle

70

Verbose Playlist ltem Details

www.falconchristmas.com

Fig. 1.3: Falcon Play Program Control

You can test the display by first setting up the Channel Outputs and then going to Display Testing. Selecting
Channel Outputs shows where to select Channel Outputs and Channel Outputs Settings shows which settings
to use.

Click on the Pixel Strings tab. Earlier we noted that P1.31 is attached to port 20. Note that at the bottom of the
screen, port 20 has a PIXEL COUNT of 24. We're telling FPP our string has 24 NeoPixels and they are attached
to port 2 which in P1.31.

Be sure to check the Enable String Cape.
Next we need to test the display. Select Display Testing shown in Selecting Display Testing.

Set the End Channel to 72. (72 is 3*24) Click Enable Test Mode and your matrix should light up. Try the different
testing patterns shown in Display Testing Options.

Note: Clicking on the -3 will subtract three from the End Channel, which should then display three fewer LEDs
which is one NeoPixel. The last of your NeoPixels should go black. This is an easy way to make sure you have

1.7. NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon Christmas) 11

http://192.168.7.2/
http://192.168.7.2/

PRU Cookbook

@ Falcon Player - FPP x + 9 - 0 x

&« C A Notsecure | 192.168.7.2findex.php aQa & 0O @ © * BoDbs £ % &

»-‘_;-x FPP o FPP n A Thu Feb 14

Idle wlan0 05:30:16 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup - Help ~

%" Channel Inputs
SCHEDULER STATUS: NEXT PLAYLIST:

Idle No playlist scheduled. | Lo FEaED) Channel Outputs &

Output Processors

Player Status: Idle
& Pixel Overlay Models

< GPIO Inputs

70

Verbose Playlist ltem Details

192.168.7.2/channeloutputs.php

Fig. 1.4: Selecting Channel Outputs

the correct pixel count.

You can control the LED string using the E1.31 protocol. (https://www.doityourselfchristmas.com/wiki/index.
php?title=E1.31 (Streaming-ACN)_Protocol) First configure the input channels by going to Channel Inputs as
shown in Going to Channel Inputs.

Tell it you have 72 LEDs and enable the input as shown in Setting Channel Inputs.
Finally go to the Status Page as shown in Watching the status.
Now run a program on another computer that generated E1.31 packets.

Controlling NeoPixels is an example python program.

1.7.5 Controlling NeoPixels

Listing 1.2: el.31-test.py -Example of generating packets to control
the NeoPixels

#!/usr/bin/env python3

Controls a NeoPixel (WS2812) string via E1.31 and FPP
https://pypi.org/project/sacn/

https://github.com/FalconChristmas/fpp/releases
import sacn

import time

provide an IP-Address to bind to if you are using Windows and want to use.
—multicast
sender = sacn.sACNsender (”7192.168.7.1")

(continues on next page)

12 Chapter 1. Case Studies - Introduction

https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol
https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol

PRU Cookbook

@ Falcon Player-FPP x4+ © - o0 x

< C A Notsecure | 192.168.7.2/channeloutputs.php aw 0@ v » Bo0Os £

‘1“‘1 FEB s FPP W A Thurebi4

Idle wlan0 05:22 AM

Channel ou pu Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

E1.31/ArtNet / DDP / KiNet Pixel Strings LED Panels Other

O

String Capes

Enable String Cape: Cape Type: F8-PB (No Serial) v Pixel Timing: Normal (ws281x) v
art channel on the next row.
e conr comt omane PN Comn s ws zas s O
1) o 1 0 1 0 Forward &~ RGB v 0 0 0 100% v 1.0
2) o 1 0 1 0 Forward ~ RGB v 0 0 0 100% v 1.0
3) o 1 0 1 0 Forward v~ RGB v 0 0 0 100% v 1.0
4) o 1 0 1 0 Forward v RGB v 0 0 0 100% v 1.0
5) o 1 0 1 0 Forward v RGB v 0 0 0 100% v 1.0
6) o 1 0 1 0 Forward ~ RGB v 0 0 0 100% v 1.0
7 o 1 0 1 0 Forward v~ RGB v 0 0 0 100% v 1.0
8) o 1 o] 1 0 Forward v RGB v 0 0 0 100% v 1.0
Differential Recewer: Standard v
9) o 1 o] 1 0 Forward v RGB v 0 0 0 100% v 1.0
10) e 1 0 1 0 Forward v RGB v 0 0 0 100% v 1.0
11) o 1 0 1 0 Forward ~ RGB v O 0 0 100% v 1.0
12) o 1 0 1 0 Forward ~ RGB v 0 0 0 100% v 1.0
Differential Receiver: Standard v
13) o 1 0 1 0 Forward ~ RGB ~ O 0 0 100% v 1.0
14) o 1 0 1 0 Forward ~ RGB v 0 0 0 100% v 1.0
15) o 1 0 1 0 Forward v RGB v 0 0 0 100% v 1.0
16) o 1 o] 1 0 Forward v RGB v 0 0 0 100% v 1.0
Differential Receiver: Standard v
17) o 1 o] 1 0 Forward v RGB v 0 0 0 100% v 1.0
18) e 1 o] 1 0 Forward v RGB v 0 0 0 100% v 1.0
19) o 1 0 1 0 Forward ~ RGB v O 0 0 100% v 1.0
20) o 1 24 1 72 Forward &~ GRB v 0 0 0 100% v 1.0
192.168.7.2/channeloutputs.php#stringTab -

Fig. 1.5: Channel Outputs Settings

1.7. NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon Christmas) 13

PRU Cookbook

Falcen Player - FPP

&

x +

C A Notsecure | 192.168.7.2/channeloutputs.php

=\ FPP -

Channel Outpu

i Status Page

a % 0 &

Status/Control ~

n
Idle

o
wian0

Thu Feb 14
05:33 AM

FPP

Content Setup ~ Input/Output Setup ~ Help ~

E1.31/ ArtNet / DDP / KiNet LED Panels Other & Network
&5 MultiSync
Sting Gapes =n
£ FPP Settings
. B FPP Backup
Enable String Cape: Cape Type: F8-PB (No Serial) v Pixel v
& Proxy Settings
Press art channel on the next row.
i@ Command Presets
PORT DESCRIPTION START PIXEL GROUP END DIR WRT END ZIG BRIGHT- GAMMA
CHANNEL COUNT COUNT CHANNEL Ais NULLS ZAG NESS
#, Effects
Nl +] 1 0 1 o F 0 0 100% v | 1.0
2) o 1 0 1 0 [Forees J 0 0 100% v 1.0
OF +] 1 0 1 0 Fowadv~ | RGB v 0 0 0 100% v 1.0
192.168.7.2/testing.php 4 n " n «. nen . a n n annos s an
Fig. 1.6: Selecting Display Testing
Falcon Player - FPP x o+ e - @
<« C A Notsecure | 192.168.7.2/testing.php a w 0 & * BoDbD s £ & 5

=\ FPP -

Display Testing

annel Testing Sequence

Enable Test Mode:

RGB Test Patterns

Status/Control ~

o
wian0

Thu Feb 14
05:35 AM

FPP

Content Setup ~ Input/Output Setup ~ Help ~

Note: RGB patterns have NO knowledge of output setups, models, etc...

not line up, the colors displayed on pixels may not match.
Model Name:

R" is the first channel, "G" is the second, efc... If channels do

-- All Channels -- v/

Channel Range to Test Chase Patterns

Start Channel:

End Channel: Chase: R-G-B

Chase: R-G-B-All

Chase: R-G-B-None

Chase: R-G-B-All-None
Update Interval:

Chase: Custom Pattern:
1000 ms
FF000000FFO00000FF

Color Order: RGB v

(6 hex digits

Solid Color Test Pattern
Fill Color: -

255

Cycle Patterns

Cycle: R-G-B
Cycle: R-G-B-All
Cycle: R-G-B-None
Cycle: R-G-B-All-None
Cycle: Custom Pattern:

FFOD0000FFO00000FF

x digits per RGB fr

Append Color To Custom Pattern

255

Fig. 1.7: Display Testing Option

S

14 Cha

pter 1. Case Studies - Introduction

PRU Cookbook

@ Falcon Player -FPP X + © - o x

<« C A Notsecure | 192.168.7.2/testing.php Qa # 0O & - s Bo@d & &

a [o=/= EPP W & ThuFeb1d

idle wlan0 05:36 AM

Display Testing Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

Channel Inputs
annel Testing Sequence %."Channel Outputs

4 Output Processors

RGB Test Patterns

Enable Test Mode: & Pixel Overlay Models
Note: RGB patterns have NO knowledge of output setups, models, etc... "R" is the first channel, "G" i! = GPIO Inputs do
not line up, the colors displayed on pixels may not match.
Model Name:
- All Channels -- v/
Channel Range to Test Chase Patterns Cycle Patterns
Start Channel: End Channel: Chase: R-G-B Cycle: R-G-B
1 72
Chase: R-G-B-All Cycle: R-G-B-All
Chase: R-G-B-None Cycle: R-G-B-None
+3 -3
Chase: R-G-B-All-None Cycle: R-G-B-All-None
Update Interval:
Chase: Custom Pattern: Cycle: Custom Pattern:
1000 ms
192.168.7.2/channelinputs.php FF000000FFO00000FF FFO00000FFO00000FF -
Fig. 1.8: Going to Channel Inputs
Falcon Player - FPP X + © - o x
<« C A Notsecure | 192.168.7.2/channelinputs.php Q % 0 & s Bo@d & &

a [o=/= EPP W & ThuFeb1d

ide wlan0 05:38 AM

Channel Inputs Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

E1.31/ArtNet/DDP Inputs

E1.31/ ArtNet / DDP Inputs Delete m

Enable Input: Timeout: 0 @ Inputs Count: 1

INPUT ACTIVE DESCRIPTION INPUT TYPE FPP CHANNEL START FPP CHANNEL END UNIVERSE # UNIVERSE COUNT UNIVERSE SIZE

E1.31 - Multicas v 72 72

L3

Fig. 1.9: Setting Channel Inputs

1.7. NeoPixels - 5050 RGB LEDs with Integrated Drivers (Falcon Christmas) 15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

PRU Cookbook

@ Falcon Player-FPP X+ © - o x

<« C A Notsecure | 192.168.7.2/index.php Qa # 0O & - s Bo@0: & a0

sx FBO o EPP m A" ThuFeb1d

Idle wian0 05:39:51 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

SCHEDULER STATUS: NEXT PLAYLIST:

& Preview

Idle No playlist scheduled.

E1.31/DDP/ArtNet Packets and Bytes Received

UNIVERSE START ADDRESS PACKETS BYTES ERRORS

a 1 368 26496 4
EL1.31 Errors - - - 1

Fig. 1.10: Watching the status

(continued from previous page)

sender.start () #o
—start the sending thread

sender.activate_output (1) # start sending out data in the 1st.
—universe

sender[1] .multicast = False # set multicast to True

sender[1l] .destination = 7192.168.7.2"” # or provide unicast information.

sender.manual_flush = True # turning off the automatic sending of packets
Keep in mind that if multicast is on, unicast is not used

LEDcount = 24

Have green fade is as it goes

data = []

for i in range (LEDcount) :
data.append (0) # Red
data.append (i) # Green
data.append (0) # Blue

sender[1] .dmx_data = data

sender.flush ()
time.sleep(0.5)

Turn off all LEDs

data=1[]

for i in range (3*LEDcount) :
data.append(0)

sender.flush ()

sender[1] .dmx_data = data

time.sleep(0.5)

Have red fade 1in

data = []

for i in range (LEDcount) :
data.append (i)
data.append(0)
data.append(0)

sender[1] .dmx_data = data

sender.flush ()

time.sleep(0.25)

(continues on next page)

16 Chapter 1. Case Studies - Introduction

PRU Cookbook

(continued from previous page)

44
s | # Make LED circle 5 times
% for j in range(15):

47 for i in range (LEDcount-1) :

a8 data[3*i+0] = 0

49 data[3*i+1] = O

50 data[3*1i+2] = 0

51 data[3*i+3] = 0

52 data[3*1+4] = 64

53 data[3*1+5] = 0

54 sender[1] .dmx_data = data
55 sender.flush ()

56 time.sleep(0.02)

ss | # Wrap around

58 i = LEDcount-1

59 data[0] = O

60 datal[l] = 64

61 datal[2] = 0

62 data[3*1i+0] = 0

63 data[3*1i+1] = 0

64 data[3*i+2] = 0

65 sender[1] .dmx_data = data

66 sender.flush ()

67 time.sleep(0.02)

68

¢ time.sleep(2) # send the data for 10 seconds
70 sender.stop () # do not forget to stop the sender

el.31-test.py

Todo: document the code

1.8 RGB LED Matrix - No Integrated Drivers (Falcon Christmas)

1.8.1 Problem

You want to use a RGB LED Matrix display that doesn’t have integrated drivers such as the 64x32 RGB LED
Matrix by Adafuit shown in Adafruit LED Matrix.

Fig. 1.11: Adafruit LED Matrix

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 17

https://www.adafruit.com/product/2277
https://www.adafruit.com/product/2277

PRU Cookbook

1.8.2 Solution

Falcon Christmas makes a software package called Falcon Player (FPP) which can drive such displays.

information:

The Falcon Player (FPP) is a lightweight, optimized, feature-rich sequence player designed to run on low-cost
SBC'’s (Single Board Computers). FPP is a software solution that you download and install on hardware which
can be purchased from numerous sources around the internet. FPP aims to be controller agnostic, it can talk
E1.31, DMX, Pixelnet, and Renard to hardware from multiple hardware vendors, including controller hardware
from Falcon Christmas available via COOPs or in the store on FalconChristmas.com.

http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F

1.8.3 Hardware

The Beagle hardware can be either a BeagleBone Black with the Octoscroller Cape, or a PocketBeagle with the
PocketScroller LED Panel Cape. (See to purchase.) Building and Octoscroller Matrix Display gives details for
using the BeagleBone Black.

PocketBeagle Driving a P5 RGB LED Matrix via the PocketScroller Cape shows how to attach the PocketBeagle
to the P5 LED matrix and where to attach the 5V power. If you are going to turn on all the LEDs to full white at
the same time you will need at least a 4A supply.

i

Fig. 1.12: PocketBeagle Driving a P5 RGB LED Matrix via the PocketScroller Cape

1.8.4 Software

The FPP software is most easily installed by downloading the current FPP release, flashing an SD card and
booting from it.

Tip: The really brave can install it on a already running image. See details at https://github.com/
FalconChristmas/fpp/blob/master/SD/FPP_Install.sh

Assuming the PocketBeagle is attached via the USB cable, on your host computer browse to http://192.168.7.2/
and you will see Falcon Play Program Control.

You can test the display by first setting up the Channel Outputs and then going to Display Testing. Selecting
Channel Outputs shows where to select Channel Outputs and Channel Outputs Settings shows which settings
to use.

18 Chapter 1. Case Studies - Introduction

http://falconchristmas.com
http://falconchristmas.com/forum/index.php/board,8.0.html
http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F
https://oshpark.com/shared_projects/7mSHNZcD
https://www.hackster.io/daniel-kulp/pocketscroller-led-panel-cape-for-pocketbeagle-fe12a6
https://kulplights.com/product/pocketscroller/
https://www.diychristmas.org/wiki/index.php?title=Building_an_Octoscroller_Matrix_Display
https://github.com/FalconChristmas/fpp/releases/
https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
http://192.168.7.2/

PRU Cookbook

@ Falcon Player - FPP x +

< C A Notsecure | 192.168.7.2/index.php

=X FPP

Status

SCHEDULER STATUS: NEXT PLAYLIST.

Idle No playlist scheduled.

Player Status: Idle

Verbose Playlist ltem Details

a % 0O & ¢

FPP

Status/Control ~ Content Setup ~

& Preview

VOLUME

70

www.falconchristmas.com

Thu Feb 14
0 6AM

Input/Output Setup ~ Help ~

Repeat:

Fig. 1.13: Falcon Play Program Control

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas)

19

PRU Cookbook

@ Falcon Player - FPP x + 9 - 0 x

&« C A Notsecure | 192.168.7.2findex.php @ & 0O @ © * BoDbs £ % &

»-‘_;-x FPP o FPP n A Thu Feb 14

Idle wlan0 05:30:16 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup - Help ~

%" Channel Inputs
SCHEDULER STATUS: NEXT PLAYLIST:

Idle No playlist scheduled. | Lo FEaED) Channel Outputs &

Output Processors

Player Status: Idle
& Pixel Overlay Models

< GPIO Inputs

70

Verbose Playlist ltem Details

192.168.7.2/channeloutputs.php

Fig. 1.14: Selecting Channel Outputs

Click on the LED Panels tab and then the only changes | made was to select the Single Panel Size to be
64x32 and to check the Enable LED Panel Output.

Next we need to test the display. Select Display Testing shown in Selecting Display Testing.

Set the End Channel to 6144. (6144 is 3*64*32) Click Enable Test Mode and your matrix should light up.
Try the different testing patterns shown in Display Testing Options.

xLights - Creating Content for the Display

Once you are sure your LED Matrix is working correctly you can program it with a sequence.

information:

xLights is a free and open source program that enables you to design, create and play amazing lighting displays
through the use of DMX controllers, E1.31 Ethernet controllers and more.

With it you can layout your display visually then assign effects to the various items throughout your sequence.
This can be in time to music (with beat-tracking built into xLights) or just however you like. xLights runs on
Windows, OSX and Linux

https://xlights.org/

xLights can be installed on your host computer (not the Beagle) by following instructions at https://xlights.org/
releases/.

Run xLights and you’ll see xLights Setup.

host$ chmod +x xLights-2021.18-x86_64.AppImage
host$./xLights-2021.18-x86_64.AppImage

20 Chapter 1. Case Studies - Introduction

https://xlights.org/
https://xlights.org/releases/
https://xlights.org/releases/

PRU Cookbook

Falcon Player - FPP x +

&« C A Notsecure | 192.168.7.2/channeloutputs.php a % 0 @ ¢ 'Y BoDO s £ % &

== FPP -

Channel Outputs

n "A' ThuFeb 14

FPP Idle wlan0 05:27 AM

Status/Control ~ Content Setup ~ Input/Qutput Setup ~ Help ~

E1.31/ ArtNet / DDP | KiNet Pixel Strings

LED Panels Other

LED Panels
Enable Led Panels: Connection: Hat/Cap/Cape v Wiring Pinout: PocketScraller v
Panel Layout: W: 1 v H 1w Start Channel: 1
S!ngle Panel 64x32 1/16 Scan v Channel Count: 6144(2048 Pixels)
Size (WxH):
Model Start Top Left v Default Panel RGB v
Corner: Color Order:
Panel Gamma: 2.2
Brightness: 10w Output By Row:
Panel Interleave: Off
Color Depth: 8 Bit v

LED Panel Layout:
Advanced Layout?

View Config from front?

Front View
Oo-1v ©
P-1 v

C-Def
192.168.7.2/channeloutputs_php#tab-LEDPanels

Fig. 1.15: Channel Outputs Settings

1.8. RGB LED Matrix - No Integrated

Drivers (Falcon Christmas)

21

PRU Cookbook

@ Falcon Player - FPP x + 9 - 0 x

& C A Notsecure | 192.168.7.2/channeloutputs.php aQa & 0O @ ©] BoDbs £ % &

»-‘_;-x FPP - FPP n ‘A" ThuFeb 14

Idle wlan0 05:28 AM

Channel Outputs Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

i Status Page

E1.31/ ArtNet / DDP | KiNet Pixel Strings &% Network

Qf MultiSync

LED Panels m

£ FPP Settings

Enable Led Panels: Connectior B FPP Backup Wiring Pinout: PocketScroller v

& Proxy Settings

Panel Layout: W: 1 v H 1w 1
&@C d P t

Single Panel 64x32 1/16 Scan = Fommand Fresets 6144(2048 Pixels)

Size (WxH): # Effects

Model Start Topleft RGB v

Corner: Display Testing

Panel Gamma: 2.2 ‘h

192.168.7.2/testing.php 10w Output By Row: -

Fig. 1.16: Selecting Display Testing

Todo: update the figures.

We’ll walk you through a simple setup to get an animation to display on the RGB Matrix. xLights can use a
protocol called E1.31 to send information to the display. Setup xLights by clicking on Add Ethernet and entering
the values shown in Setting Up E1.31.

The IP Address is the Bone’s address as seen from the host computer. Each LED is one channel, so one RGB
LED is three channels. The P5 board has 3*64*32 or 6144 channels. These are grouped into universes of 512
channels each. This gives 6144/512 = 12 universes. See the E.13 documentation for more details.

Your setup should look like xLights setup for P5 display. Click the Save Setup button to save.

Next click on the Layout tab. Click on the Matrix button as shown in Setting up the Matrix Layout, then click
on the black area where you want your matrix to appear.

Layout details for P5 matrix shows the setting to use for the P5 matrix.

All | changed was # Strings, Nodes/String, Starting Location and most importantly, expand String Prop-
erties and select at String Type of RGB Nodes. Above the setting you should see that Start Chan is 1 and
the End Chan is 6144, which is the total number of individual LEDs (3*63*32). xLights now knows we are
working with a P5 matrix, now on to the sequencer.

Now click on the Sequencer tab and then click on the New Sequence button (Starting a new sequence).

Then click on Animation, 20fps (50ms), and Quick Start. Learning how to do sequences is beyond the
scope of this cookbook, however I'll shown you how do simple sequence just to be sure xLights is talking to the
Bone.

22 Chapter 1. Case Studies - Introduction

https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol#Configuring_Sequencing_Software_to_use_E1.31_Output

PRU Cookbook

Falcon Player - FPP X o+

<« C A Notsecure | 192.168.7.2/testing.php

= FPP

Status/Control ~

Display Testing

Channel Testing Sequence

RGB Test Patterns

Enable Test Mode:

Qa % 0 & ©

&' ThuFeb 14
wland 05:32 AM

Content Setup ~ Input/Output Setup ~ Help ~

match.
Model Name:

Note: RGB patterns have NO knowledge of output setups, models, etc... "R" is the first channel,
"G" is the second, etc... If channels do not line up, the colors displayed on pixels may not

—All Channels -- v

Channel Range to Test Chase Patterns

Start End

@ " Chase: R-G-B
Channel: Channel:

1 Chase: R-G-B-All
(1-8388608) Chase: R-G-B-None
[o ‘ Chase: R-G-B-All-None
Update Interval: Chase: Custom Pattern:
oo FFO00000FFO00000FE

(6 hex digits per RGB triplet)

Color Order: RGB v

Solid Color Test Pattern

Fill Color: -

255 0

Cycle Patterns
Cycle: R-G-B
Cycle: R-G-B-All
Cycle: R-G-B-None
Cycle: R-G-B-All-None
Cycle: Custom Pattern:

FFO00000FFO00000FF

(6 hex digits per RGB triplet)

Append Color To Custom Pattern

255

Fig. 1.17: Display Testing Options

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas)

23

PRU Cookbook

File Edit Tools Vview Audio Import Help
‘AEEE EN 5 mEE E DEHE W
Controllers | Layout | Sequencer

Directories

Show Directory: change Permanently Change Temporarily

Controllers

Name Protocol Address

Add UsB

Add Etherne'k

Add Null

Discover

ights (Ver 2021.18 64bit) June 2, 20

File Edit Tools View Audio Import Help
(&l : ;
‘HENE HE B EEE H SEHE - §
Controllers | Layout = Sequencer

Directories.

Sshow Directory: Change Permanently Change Temporarily

Universes/id Channels

Controllers
_ A Name Protocol Address
Ethernet_ E131 192.16
Add USB 5

Add Ethernet

Add Null

Discover

ights (Ver 2021.18 64bit) June

2021

pREn e

/home/yoder/BeagleBoard/xLights

Controller Sync
Max Duplicate Frames To Suppress 0
Force LocalIP

Global FPP Proxy

Open Delete

/home/yoder/BeagleBoard/xLights

Fig. 1.18: xLights Setup

R0 00

/homefyoder/BeagleBoard/xLights

Universes/ld Channels Name Ethernet_
Description Bone
Active Active
Vendor
Suppress Duplicate Frames O
Multicast O
IP Address 192.168.7.2
Protocol E131
Priority 100
Managed (v
FPP Proxy IP/Hostname
Start Universe 1
Universe Count 12
Unive 3 1-12
Individual Sizes (]
Channels per Universe 512
Models

jpload Inpu Upload Output Open Delete

/home/yoder/BeagleBoard/xLights

Fig. 1.19: Setting Up E1.31

*

)

24

Chapter 1. Case Studies - Introduction

PRU Cookbook

ights (Ver 2021.18 64bit;

File Edit Tools view Audio Import Help

A PENC) : z ‘PEO O
- AEEE HE & WMEE B EEHE it} EE N H ENENE B EHRE EBER

Controllers | Layout | Sequencer

Directories
Show Directory: Change Permanently Change Temporarily = /home/yoder/BeagleBoard/xLights
Controllers
Save |k A Name Protocol Address Universesfid Channels Name Ethernet_
m Ethernet_ E131 168.7.2 6144 [1-6144] | Description Bone
el s Active Active
Add Ethernet Vendor
Suppress Duplicate Frames
Add Null Multicast
IP Address 192.168.7.2
Discover Protocol E131
Priority 100
v
FPP Proxy IP/Hostname
Start Universe 1
Universe Count 12

Individual Sizes

[crametsperinvee |- I

Open Delete

/home/yoder/BeagleBoard/xLights

Fig. 1.20: xLights setup for P5 display

File Edit Tools View Audio Import Help

A - RERr)

s R0 G *
@][] Hl 5 INE B EEHE il [| BN | H EEENE B HENE EER

Controllers | Layout Sequencer

pode AEEEEEBRLEE EANE

Nodes/String 64
Strands/String 1
Starting Location Top Left
~ Indiv Start Chans
Start Channel 1
Shadow Model For
Description
Preview Default
Strand/Node Names ~Click To Edit-
Faces ~Click To Edit-
Dimming Curves ~Click To Edit-
States ~Click To Edit-
Sub-Models ~Click To Edit-
~ Controller Connection
Port 0
Protocol

Overlap checks enabled

Save

x=45.06 y=94.03 f/home/yoder/BeagleBoard/xLights

Fig. 1.21: Setting up the Matrix Layout

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 25

PRU Cookbook

xLights (Ver 2021.18 64bit) June 2, 2021 - o =
File Edit Tools view Audio Import Help
i 5 R0 00 *
HENE NN S5 WNE B SEEE @ [| BN | I ENEEE B ENE mEN

Controllers | Layout Sequencer

Models EFROAECOAEER

]
Description
Preview Default
Strand/Node Names ~Click To Edit~
Faces ~Click To Edit-
Dimming Curves ~Click To Edit-
States ~Click To Edit-
Sub-Models —Click To Edit-
Port 0
Protocol
string Type RGB Nodes k

»

b

Overlap checks enabled
Save
X=45.06 y=94.03 /home/yoder/BeagleBoard/xLights

Fig. 1.22: Layout details for P5 matrix

ights (Ver 2021.18 64bit

File Edit Tools View Audio Import Help
[: R0 00 J
HENE §HEN 5 WNE B SEHE N [| BN | H EEENE B HENE EER

Controllers | Layout Sequencer
] v
&
View:
update [l
Time: 00:00:00

x=45.06 y=94.03 f/home/yoder/BeagleBoard/xLights

Fig. 1.23: Starting a new sequence

26 Chapter 1. Case Studies - Introduction

PRU Cookbook

Setting Up E1.31 on the Bone

First we need to setup FPP to take input from xLights. Do this by going to the Input/Output Setup menu and
selecting Channel Inputs. Then enter 12 for Universe Count and click set and you will see E1.31 Inputs.

@ Falcon Player - FPP x + @ - 0 X

&« C A Notsecure | 192.168.7.2/channelinputs.php Qa # 0O & ¢ » Bo0 & & %

";3'& Fpp - F P P n by Fri Aug 6

Idle wlan0 03:46 PM

Channel Inpu S Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

E1.31/ ArtNet / DDP Inputs [petete |[crone | ([EZIN

Enable Input: Timeout: 0 @ Inputs Count: 12 a

INPUT ACTIVE DESCRIPTION INPUT TYPE FPP CHANNEL FPP CHANNEL UNIVERSE # UNIVERSE UNIVERSE
START END COUNT SIZE

E1.31 - Multicas 512 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512
E1.31 - Multicas 512

E1.31 - Multicas 512

(Drag entry to reposition)

Fig. 1.24: E1.31 Inputs

Click on the Save button above the table.

Then go to the Status/Control menu and select Status Page.

Todo: update this

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 27

PRU Cookbook

= FOD e - Host W ‘A ThuFeb14 :

FPP Idle wian0 05:17:33 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

SCHEDULER STATUS: NEXT PLAYLIST.
HiPreview

Please consider enabling the collection of anonymous statistics on the hardware and features used to help us improve FPP in the future. You
may preview the data or disable this banner on the Systems Settings Page.

E1.31/DDP/ArtNet Packets and Bytes Received

(V4| Live Update Stats

Universe Start Address Packets Bytes Errors
1 0

o =~ M n & W k=

oo o o o 0 o o o oo
O OO0 OO0 00O 0O O OO
(=== R= R =l ===l == -]

Fig. 1.25: Bridge Mode

28 Chapter 1. Case Studies - Introduction

PRU Cookbook

Testing the xLights Connection

The Bone is now listening for commands from xLights via the E1.31 protocol. A quick way to verify everything
is t o return to xLights and go to the Tools menu and select Test (xLights test page).

Test Lights X

[#4 Output ko lights

Outputs Model Groups Models
— [Don't send data to unused outputs

Load Save
~ &% [1-6144]
~ [VEthernet_E131192.168.7.2 (1-6144) Bone
k » o [(MEL31{1}[1-512] (1-512) Standard RGB RGB Cycle
» [ME1.31{2}[1-512] (513-1024) T
— Function H H

» [¥E131{3}[1-512] (1025-1536)) ﬁ;;‘;ﬂfund mtgehnllsgirt
» [(ME131{4}[1-512] (1537-2048) O Off Y nsity
» [¥E1.31{5} [1-512] (2049-2560) @ Chase 255 555()255
v [¥E131{6} [1-512] (2561-3072) :
» [(MEL31{7}[1-512] (3073-3584) () Chase 1/3
v [AE1.31{8} [1-512] (3585-4096)]
» [(ME1.31{9}[1-512] (4097-4608) () Chase 1/4
» [(VE1.31{10} [1-512] (4609-5120) .
» [(ME131{11) [1-512] (5121-5632) - Chase 1/5
b [wE1.31{12} [1-512] (5633-6144) () Alternate

() Twinkle 5%

() Twinkle 10%

() Twinkle 25%

() Twinkle 50%

) Shimmer
") Background Only 0 o 0

Speed

Testing 6144 channels; chase now at ch# 35

Fig. 1.26: xLights test page

Click the box under Select channels..., click Output to lights and select Twinkle 50%. You matrix should
have a colorful twinkle pattern (xLights Twinkle test pattern).

A Simple xLights Sequence

Now that the xLights to FPP link is tested you can generate a sequence to play. Close the Test window and
click on the Sequencer tab. Then drag an effect from the Effects box to the timeline that below it. Drop it
to the right of the Matrix label (Drag an effect to the timeline). The click Output To Lights which is the yellow
lightbulb to the right on the top toolbar. Your matrix should now be displaying your effect.

The setup requires the host computer to send the animation data to the Bone. The next section shows how to
save the sequence and play it on the Bone standalone.

Saving a Sequence and Playing it Standalone

In xLights save your sequence by hitting Ctrl-S and giving it a name. | called mine fire since | used a fire effect.
Now, switch back to FPP and select the Content Setup menu and select File Manager. Click the black Select
Files button and select your sequence file that ends in .fseq (FPP file manager).

Once your sequence is uploaded, got to Content Setup and select Playlists. Enter you playlist name (I used
fire) and click Add. Then click Add a Sequence/Entry and select Sequence Only (Adding a new playlist to
FPP), then click Add.

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 29

PRU Cookbook

} =
- e ‘N\‘
-~ 3 .0 e
A e==rgs .
« =
: *
. o 3 e
o
Fig. 1.27: xLights Twinkle test pattern
xLights - fhome/yoder/BeagleBoard/xLights/fire - o o
File Edit Tools View Audio Import Help
L NEN AS S - DO@ aBHA A D pRn e
AONEIEE TROEMMEOSE [SEHEARBS SMad@Ee0- DOSNENE-EERENEEmEN
Controllers | Layout | Sequencer

E) = = ® = ®

,,,,,,,,, MWL) || [+ Reset panel when changin | (4 Reset panel when changii
777777777 5 E 5 & 5 Suppress Effect Until Frame | | Buffer »
777777777 . Freeze Effect At Frame
777777777 [+ Reset panel when changin Render Style Default
————— e

5.00 1000 15.00 2000 2500 30100 18500 L0

Time: 0:00.00

FH update | X
Butterfly -
Colors Rainbow ~ 5
5]
Effect Type: -
Model: Selec
Time: start | 000.0 End | 000, selecl| d Render

/hor’n’eiyoder/BeagleBoald/xLigthfﬁre.fseq Updatedin 0.465seconds

start: 0:00.000 end: 0:05.050 duration: 0:05.050 Butterfly

Fig. 1.28: Drag an effect to the timeline

30

Chapter 1. Case Studies - Introduction

PRU Cookbook

Falcon Player - FPP x +

<« C A Notsecure | 192.168.7.2/uploadfile php a % 0 @ © s BoDs: £ 8

‘:"A FBP - t 5 Host 11 ‘A" ThuFeb 14

FPP Ide wlan0 05:35AM

File Manager Status/Control ~ Content Setup ~

Input/Output Setup ~ Help ~

Audio Video Images Effects Scripts Logs Uploads

Sequence Files (.fseq)

fire.fseq 2.35KB 02/14/19 05:34 AM

[Play Here] [Download] [Rename] [Delete]

CTRL+Click to select multiple items

Drag & Drop or Select Files to upload

Select Files

1) fire.fseq (2.35 KB)

I [close

www.falconchristmas.com

Fig. 1.29: FPP file manager

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 31

PRU Cookbook

EMax|ghslax | @LECx | @ (1) x| @ste x| Do x| Bcox| f Micx | QMax|[@Pocx|[@Pocx|@intix|[Jher x| &Phex | WMwax @Flx + © - 0o x
<« C A Notsecure | 192.168.7.2/playlists.php a % 0@ © s BoDs: £ 8

=, FPP e 5 Host M A" ThuFeb14 f

FPP ide wlan0 06:10AM

P|ay|iStS Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

(6] (ron - (EEEEED

ITEMS DURATION

+ Add a Sequence/Entry

Lead In Oitems 00:00
ITEMS DURATION
Main Playlist litem 00:30

Sequence: fire.fseq Length: 00:30

ITEMS DURATION

Lead Out Oitems 00:00

www.falconchristma:

bone-debi....img.xz ~ Religious Acc....pdf ~ B 28-Daniel-FNL.jpg ~ B 30-Joel-FNLjpg A B 16-Esther-FNLjpg ~ [Code_Samples.zip ~ showall = x

Fig. 1.30: Adding a new playlist to FPP

32 Chapter 1. Case Studies - Introduction

PRU Cookbook

Be sure to click Save Playlist on the right. Now return to Status/Control and Status Page and make sure
FPPD Mode: is set to Standalone. You should see your playlist. Click the Play button and your sequence

will play.
@ Falcon Player -FPP x + o - o x
< C A Notsecure | 192.168.7.2/index.php Qa % 0 & % s BoD0:&: £ n s

== FPP - P Host M A ThuFeb14 :-

FPP Idle wlan0 05:39:10 AM

Status Status/Control ~ Content Setup ~ Input/Output Setup ~ Help ~

SCHEDULER STATUS: NEXT PLAYLIST:

#iPreview

Idle No playlist scheduled.

Player Status: Idle
fire Repeat:

VOLUME

-«
70

ITEMS DURATION

Main Playlist litem 00:30
Sequence: fire.fseq Length: 00:30

Verbose Playlist Item Details @

www.falconchristmas.com

Fig. 1.31: Adding a new playlist to FPP

The beauty of the PRU is that the Beagle can play a detailed sequence at 20 frames per second and the ARM
procossor is only 15% used. The PRUs are doing all the work.

simpPRU - A python-like language for programming the PRUs

simpPRU is a simple, python-like programming language designed to make programming the PRUs easy. It has
detailed documentation and many examples.

information

simpPRU is a procedural programming language that is statically typed. Variables and functions must be as-
signed data types during compilation. It is type-safe, and data types of variables are decided during compila-
tion. simPRU codes have a +.sim+ extension. simpPRU provides a console app to use Remoteproc functionality.

https://simppru.readthedocs.io/en/latest/

You can build simpPRU from source, more easily just install it. On the Beagle run:

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 33

https://github.com/VedantParanjape/simpPRU
https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/examples/digital_read/
https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/install/install/

PRU Cookbook

bone$ wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
—simppru-1.4-armhf.deb

bone$ sudo dpkg -1 simppru-1.4-armhf.deb

bone$ sudo apt update

bone$ sudo apt install gcc—-pru

Now, suppose you wanted to run the LED blink example which is reproduced here.

Listing 1.3: LED Blink (blink.sim)

/* From: https://simppru.readthedocs.io/en/latest/examples/led_blink/ */
while : 1 == 1 {

digital_write(P1_31, true);

delay (250) ; /* Delay 250 ms */

digital_write (P1_31, false);

delay (250);

blink.sim

Just run simppru

bone$ simppru blink.sim —--load
Detected TI AM335x PocketBeagle
inside while

[4] : setting P1_31 as output

Current mode for P1_31 is: pruout

Detected Tl AM335x PocketBeagle

The +-load+ flag caused the compiled code to be copied to +/lib/firmware+. To start just do:

bone$ cd /dev/remoteproc/pruss—corel/

bone$ 1s

device firmware name power state subsystem uevent
bone$ echo start > state

bone$ cat state

running

Your LED should now be blinking.

Check out the many examples (https://simppru.readthedocs.io/en/latest/examples/led_blink/).

MachineKit

MachineKit is a platform for machine control applications. It can control machine tools, robots, or other au-
tomated devices. It can control servo motors, stepper motors, relays, and other devices related to machine
tools.

information

Machinekit is portable across a wide range of hardware platforms and real-time environments, and delivers
excellent performance at low cost. It is based on the HAL component architecture, an intuitive and easy to use
circuit model that includes over 150 building blocks for digital logic, motion, control loops, signal processing,
and hardware drivers. Machinekit supports local and networked Ul options, including ubiquitous platforms like
phones or tablets.

http://www.machinekit.io/about/

34 Chapter 1. Case Studies - Introduction

https://simppru.readthedocs.io/en/latest/examples/led_blink/
https://simppru.readthedocs.io/en/latest/examples/led_blink/
http://www.machinekit.io/
http://www.machinekit.io/about/

PRU Cookbook

Examples LED bl‘nk example Table of contents
Digital Read Code

Digital Write Explaination
Delay © schematic

LED Blink

Hardware Counter Pocket Beagle BeagleBone Black / Beagle Bone Black Wireless

LED Blink using while loop
LED Blink using for loop

LED Blink using hardware counter

as delay f

Red--> P1_31
HCSR04 Distance Sensor Blue—-> GND
example

LED Blink with button control

Using RPMSG to communicate — R
with ARM core e el veces sesss sssss seses

Using RPMSG to implement a
simple calculator on PRU

Sending state of button using
RPMSG

HCSR04 Distance Sensor
example (sending distance data
to ARM using RPMSG)

Fig. 1.32: simpPRU Examples

1.8.5 ArduPilot

ArduPilot is a open source autopilot system supporting multi-copters, traditional helicopters, fixed wing aircraft
and rovers. ArduPilot runs on a many hardware platforms including the BeagleBone Black and the BeagleBone
Blue.

information

Ardupilot is the most advanced, full-featured and reliable open source autopilot software available. It has
been developed over 5+ years by a team of diverse professional engineers and computer scientists. It is the
only autopilot software capable of controlling any vehicle system imaginable, from conventional airplanes,
multirotors, and helicopters, to boats and even submarines. And now being expanded to feature support for
new emerging vehicle types such as quad-planes and compound helicopters.

Installed in over 1,000,000 vehicles world-wide, and with its advanced data-logging, analysis and simulation
tools, Ardupilot is the most tested and proven autopilot software. The open-source code base means that it
is rapidly evolving, always at the cutting edge of technology development. With many peripheral suppliers
creating interfaces, users benefit from a broad ecosystem of sensors, companion computers and communica-
tion systems. Finally, since the source code is open, it can be audited to ensure compliance with security and
secrecy requirements.

The software suite is installed in aircraft from many OEM UAV companies, such as 3DR, jDrones, PrecisionHawk,
AgEagle and Kespry. It is also used for testing and development by several large institutions and corporations
such as NASA, Intel and Insitu/Boeing, as well as countless colleges and universities around the world.

1.8. RGB LED Matrix - No Integrated Drivers (Falcon Christmas) 35

http://ardupilot.org/
http://ardupilot.org/copter/docs/common-autopilots.html
http://ardupilot.org/dev/docs/building-for-beaglebone-black-on-linux.html#building-for-beaglebone-black-on-linux
http://ardupilot.org/copter/docs/common-beagle-bone-blue.html
http://ardupilot.org/copter/docs/common-beagle-bone-blue.html

PRU Cookbook

36 Chapter 1. Case Studies - Introduction

Chapter 2

Getting Started

We assume you have some experience with the Beagle and are here to learn about the PRU. This chapter
discusses what Beagles are out there, how to load the latest software image on your Beagle, how to run the
Visual Studio Code IDE and how to blink an LED. ======= |latest software image on your Beagle, how to run
the Visual Studio Code (VS Code) IDE and how to blink an LED.

If you already have your Beagle and know your way around it, you can find the code at https://git.beagleboard.
org/beagleboard/pru-cookbook-code and book contents at https://git.beagleboard.org/docs/docs.beagleboard.
io under the books/pru-cookbook directory.

2.1 Selecting a Beagle

2.1.1 Problem

Which Beagle should you use?

2.1.2 Solution

http://beagleboard.org/boards lists the many Beagles from which to choose. Here we’'ll give examples for
the venerable BeagleBone Black, the robotics BeagleBone Blue, tiny PockeBeagle and the powerful Al. All the
examples should also run on the other Beagles too.

2.1.3 Discussion
BeagleBone Black
If you aren’t sure which Beagle to use, it’s hard to go wrong with the BeagleBone Black. It's the most popular
member of the open hardware Beagle family.
The Black has:
e AM335x 1GHz ARM® Cortex-A8 processor
* 512MB DDR3 RAM
* 4GB 8-bit eMMC on-board flash storage
* 3D graphics accelerator
* NEON floating-point accelerator
* 2x PRU 32-bit microcontrollers

¢ USB client for power & communications

37

https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/docs/docs.beagleboard.io
http://beagleboard.org/boards
http://beagleboard.org/black
http://beagleboard.org/blue
http://beagleboard.org/pocket
http://beagleboard.org/ai
http://beagleboard.org/black

PRU Cookbook

Fig. 2.1: BeagleBone Black

¢ USB host

e Ethernet

* HDMI

e 2Xx 46 pin headers

See http://beagleboard.org/black for more details.

BeagleBone Blue

The Blue is a good choice if you are doing robotics.

Fig. 2.2: BeagleBone Blue

The Blue has everything the Black has except it has no Ethernet and no HDMI. But it also has:

Wireless: 802.11bgn, Bluetooth 4.1 and BLE

Battery support: 2-cell LiPo with balancing, LED state-of-charge monitor

Charger input: 9-18V

Motor control: 8 6V @ 4A servo out, 4 bidirectional DC motor out, 4 quadrature encoder in
Sensors: 9 axis IMU (accels, gyros, magnetometer), barometer, thermometer

User interface: 11 user programmable LEDs, 2 user programmable buttons

In addition you can mount the Blue on the EduMIP kit as shown in BeagleBone Blue EduMIP Kit to get a balancing

robot.

https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8 shows how to assemble the robot
and control it from LabVIEW.

38

Chapter 2. Getting Started

http://beagleboard.org/black
http://beagleboard.org/blue
https://www.renaissancerobotics.com/eduMIP.html
https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8
http://www.ni.com/en-us/shop/labview.html

PRU Cookbook

Fig. 2.3: BeagleBone Blue EduMIP Kit

2.1. Selecting a Beagle

39

PRU Cookbook

PocketBeagle

The PocketBeagle is the smallest member of the Beagle family. It is an ultra-tiny-yet-complete Beagle that is
software compatible with the other Beagles.

yajaod/bio*pieogaibeaqg

Nala)
Zy nay atbeagieddog Flls

Fig. 2.4: PocketBeagle

The Pocket is based on the same processor as the Black and Blue and has:
* 8 analog inputs
» 44 digital I/0s and
* numerous digital interface peripherals

See http://beagleboard.org/pocket for more details.

BeagleBone Al

If you want to do deep learning, try the BeagleBone Al.
The Al has:
* Dual Arm® Cortex®-A15 microprocessor subsystem
* 2 C66x floating-point VLIW DSPs
e 2.5MB of on-chip L3 RAM
e 2x dual Arm® Cortex®-M4 co-processors
¢ 4x Embedded Vision Engines (EVEs)
e 2x dual-core Programmable Real-Time Unit and Industrial Communication SubSystem (PRU-ICSS)
* 2D-graphics accelerator (BB2D) subsystem
* Dual-core PowerVR® SGX544™ 3D GPU
¢ |VA-HD subsystem (4K @ 15fps encode and decode support for H.264, 1080p60 for others)

* BeagleBone Black mechanical and header compatibility

40 Chapter 2. Getting Started

http://beagleboard.org/pocket
http://beagleboard.org/pocket
http://beagleboard.org/ai

PRU Cookbook

Fig. 2.5: BeagleBone Al

* 1GB RAM and 16GB on-board eMMC flash with high-speed interface

e USB type-C for power and superspeed dual-role controller; and USB type-A host
* Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth

* microHDMI

» Zero-download out-of-box software experience with Debian GNU/Linux

2.2 Installing the Latest OS on Your Bone

2.2.1 Problem

You want to find the latest version of Debian that is available for your Bone.

2.2.2 Solution

On your host computer open a browser and go to http://www.beagleboard.org/distros.

Todo: Update links

This shows you two current choices of recent Debian images, one for the BeagleBone Al (AM5729 Debian 10.3
2020-04-06 8GB SD IoT TIDL) and one for all the other Beagles (AM3358 Debian 10.3 2020-04-06 4GB SD loT).
Download the one for your Beagle.

It contains all the packages we’ll need.

2.2. Installing the Latest OS on Your Bone 41

http://www.beagleboard.org/distros
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/bone-debian-10.3-iot-armhf-2020-04-06-4gb.img.xz

PRU Cookbook

&

§: BeagleBoard.org-latest- x + R u |

C (® Notsecure | beagleboard.org/latest-images ¥+ O @& @ ©® # E =2 0 O 'll 2 o 9 o

i Apps [MyRHIT @ Discrete-Time...

ﬁbeogleboadag LD

Learn U Explore I

BeagleBoard.org > latest-images

BeagleBoard.org Latest Firmware Images

Download the latest firmware for your BeagleBoard, BeagleBoard-xM,
BeagleBoard-X15, BeagleBone, BeagleBone Black, BeagleBone Black b | boad ®
Wireless, BeagleBone Al, BeagleBone Blue, SeeedStudio BeagleBone O @ @1 g e omg
Green, SeeedStudio BeagleBone Green Wireless, SanCloud

BeagleBone Enhanced, elementl4 BeagleBone Black Industrial, Arrow BeagleBone Black Industrial, Mentorel BeagleBone
uSomlQ, Neuromeka BeagleBone Air, or PocketBeagle

See the Getting Started guide and the community wiki page & for hints on loading these images. See our Debian page on how the
latest images are built.

Recommended Debian Images
1out graphical de

with machine |"‘EI'I'H'|L'I acceleration to

) for BeagleBoard-X15 and BeagleBone Al via

r AM5729 Debian 10.3 2020-04-06 8GB SD 10T TIDL

image for BeagleBoard-X15, and BeagleBone Al - more info - sha256sum: b9ac77af8be8156144b6192ed5d94404e381f19c0611042b26aadff16f49530e

ster loT for BeagleBone and PocketBeagle v

> AM3358 Deblan 10.3 2020 04-06 4GB SD loT
image for PocketBeagle, BeagleB eBone Black, BeagleBone Bla 55 Studio BeagleBone
Green, SeeedStudio BeagleBone Green Wireless, SanCloud BeagleBor one uSomlQ - more
info - sha256sum: 22448Da2BdDdSEEZEEB?Saac3D4EQlEaETE2e2UJ.‘LEle[:dEdQﬂBEdG[}TOSTMBd—

ch for BeagleBoard via m card

» OMAP3/DM3730 Debian 9.5 2018-10-07 4GB SD LXQT image for BeagleBoard, BeagleBoard-xM - more info - sha256sum:
2a29626ab7c20890109a0eeadeatbieddede31d01dEBad47h38eaacs953d8eblece

Fig. 2.6: Latest Debian images

42

Chapter 2. Getting Started

PRU Cookbook

2.3 Flashing a Micro SD Card

2.3.1 Problem

I've downloaded the image and need to flash my micro SD card.

2.3.2 Solution

Get a micro SD card that has at least 4GB and preferably 8GB.

There are many ways to flash the card, but the best seems to be Etcher by https://www.balena.io/. Go to
https://www.balena.io/etcher/ and download the version for your host computer. Fire up Etcher, select the
image you just downloaded (no need to uncompress it, Etcher does it for you), select the SD card and hit the
Flash button and wait for it to finish.

Etcher

bone-debi..gb.img.xz Multi-Card
Flash!

“ETCHER @ resin.io

Fig. 2.7: Etcher

Once the SD is flashed, insert it in the Beagle and power it up.

2.4 Visual Studio Code IDE

2.4.1 Problem

How do | manage and edit my files?

2.4.2 Solution

The image you downloaded includes Visual Studio Code, a web-based integrated development environment
(IDE) as shown in Visual Studio Code IDE.

Just point the browser on your host computer to http://192.168.7.2:3000 and start exploring. You may also
want to upgrade bb-code-server to pull in the latest updates. Another route to take is to apply this command
to boot the service called bb-code-server.

2.3. Flashing a Micro SD Card 43

https://www.balena.io/
https://www.balena.io/etcher/
https://github.com/coder/code-server
http://192.168.7.2:3000

PRU Cookbook

File Edit Selection View Go FRun

@ EXPLORER

~ BEAGLEBOARD (WORKSPACE)

p ~ examples

~ BeagleBone /Black

z_p > gpied

@ analogin.py

)5 analoginCallback.js
ﬁb 9 J

s analoginOutjs

5 J
Eb Js analoglnSync.js
$ blinkinternalLED.sh

S blinkLED.bs.js
C blinkLED.c

S blinkLED.js
@ blinkLED.py

5 blinkLED.sh
@ blinkLED2.py
@ blinkLEDold.py
s fadelED,js

@ fadelLED.py

S input,js

S input2js

(@) README.md
@ seqlEDs.py

@ IS swipelEDjs

€ .gitignore

{'é} » OUTLINE

» TIMELINE

®oA0o Wo

@ analoginContinuous.py

BeagleBoard (Workspace) - code-server

Show All Commands |Cid +
Go to File | Cid +

Find in Files ctd +

Show Settings | Cid +

Fig. 2.8: Visual Studio Code IDE

D500

Layout: US

0

a4

Chapter 2. Getting Started

PRU Cookbook

sudo systemctl start bb-code-server.service

If you want the files in your home directory to appear in the tree structure click the settings gear and select
Show Home in Favorites as shown in Visual Studio Code Showing Home files.

4 Welcome-BeagleBoard x + v~ - 0O x
€ 9 C ANotsecure https://10.0.5.12:3000/?workspace=/home/d... B> ¢ 0O @ & » O B @ 2 £ DO o
File Edit Selection WView Go Run Terminal Help Welcome - BeagleBoard (Workspace) - code-server | =N
| @ EXPLORER v B welcome x > -
~~ BEAGLEBOARD (WORKSPACE)
/O ~ examples B
> BeagleBone
© otignere code-server
E-a BeagleBoard.code-workspace
> LICENSE Editing evolved
=) @ README.md
a settings.json
Start Next Up
[3 NewFile..
+ New e Deploy code-server for your team
) openfile... wa pment
nfrastructure with
I—‘; Clone Git Repository...
self-service portal which
s via Terraform—Linux, macos
Recent
Get started —
You have no recent folders, open a folder to start.
Templates
-
Walkthroughs
Vcet Started with VS Code for th...
Discover the best customizations to make
@ VS Code For the Web yours.
ﬁ} > OUTLINE @ Getstarted with Python D...
> TIMELINE
Pmat O ®oA0 Wo Layoutius L)

Fig. 2.9: Visual Studio Code Showing Home files

Just point the browser on your host computer to http://192.168.7.2:3000 and start exploring.
If you want to edit files beyond your home directory you can link to the root file system by:

bone:~$ cd

bone:~$ 1n -s / root
bone:~$ cd root
bone:~$ 1s

bbb-uEnv.txt boot etc ID.txt lost+found mnt opt root sbin.
— Sys usr
bin dev home 1ib media nfs-uEnv.txt proc run STV o

— tmp var

Now you can reach all the files from VS Code.

2.5 Getting Example Code

2.5.1 Problem

You are ready to start playing with the examples and need to find the code.

2.5. Getting Example Code 45

http://192.168.7.2:3000

10

11

12

13

14

15

16

17

18

PRU Cookbook

2.5.2 Solution

You can find the code on the PRU Cookbook Code project on git.beagleboard.org: https://git.beagleboard.org/
beagleboard/pru-cookbook-code. Just clone it on your Beagle.

bone:~$ cd /opt/source

bone:~$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone:~$ cd pru-cookbook-code

bone:~$ sudo ./install.sh

bone:~$ 1ls -F

Olcase/ 03details/ O05blocks/ 07more/ README.md

02start/ O4details/ 06io/ 08ai/

Each chapter has its own directory that has all of the code.

bone:~$ cd 02start/

bone:~$ 1s

hello.pruO.c hello.prul_1.c Makefile setup.sh

ai.notes hello2.prul_1l.c hello2.pru2_1.c Makefile
hello2.pru0.c hello2.prul.c hello.prul.c setup2.sh*
hello2.prul_0.c hello2.pru2_0.c hello.prul_1l.c setup.sh*

Go and explore.

2.6 Blinking an LED

2.6.1 Problem

You want to make sure everything is set up by blinking an LED.

2.6.2 Solution

The ‘hello, world’ of the embedded world is to flash an LED. hello.pru0.c is some code that blinks the USR3
LED ten times using the PRU.

Todo: The ‘s and _'s in the code are messing with the formatting.

Listing 2.1: hello.pru0.c

#include <stdint.h>
#include <pru_cfg.h>
#include ”"resource_table_empty.h”
#include ”prugpio.h”

volatile register unsigned int __ R30;
volatile register unsigned int _ R31;

void main (void) {
int i;
uint32_t *gpiol = (uint32_t *)GPIO1;

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

for (1=0; i<10; i++) {
gpiol [GPIO_SETDATAOUT] = USR3; // The the USR3 LED.
(continues on next page)

46 Chapter 2. Getting Started

https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/beagleboard/pru-cookbook-code

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

PRU Cookbook

(continued from previous page)

—on
__delay_cycles (500000000/5); // Wait 1/2 second
gpiol [GPIO_CLEARDATAOUT] = USR3;
__delay_cycles (500000000/5) ;

}
__halt();

}

// Turns off triggers

#pragma DATA_SECTION(init_pins, ”.init_pins”)

#pragma RETAIN (init_pins)

const char init_pins[] =
”/sys/class/leds/beaglebone:green:usr3/trigger\Onone\0” \
"\0\0"”;

hello.pru0.c

Later chapters will go into details of how this code works, but if you want to run it right now do the following.

bone:~$ cd /opt/source

bone:~$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone:~$ cd pru-cookbook-code/02start

bone:~$ sudo ../install.sh

Tip: If the following doesn’t work see Compiling with clpru and Inkpru for installation instructions.

Running Code on the Black or Pocket

bone:~$ make TARGET=hello.pru0
/opt/source/pru-cookbook—-code/common/Makefile:27: MODEL=TI_AM335x_BeagleBone_
—Green_Wireless, TARGET=hello.pru0, COMMON=/opt/source/pru—cookbook—-code/
—common

= Stopping PRU O

CC hello.prulO.c

” /opt/source/pru-cookbook-code/common/prugpio.h”, line 53: warning #1181-D:
—#warning directive: "Found else”

LD /tmp/vsx—examples/hello.prul.o

= copying firmware file /tmp/vsx—examples/hello.prul.out to /lib/firmware/
—am335x—-prul—fw

= Starting PRU O

write_init_pins.sh

writing "none” to ”/sys/class/leds/beaglebone:green:usr3/trigger”

MODEL = TI_AM335x_BeagleBone_Green_Wireless
PROC = pru
PRUN =0

PRU_DIR = /sys/class/remoteproc/remoteprocl

Tip: If you get the following error:

cp: cannot create regular file '/lib/firmware/am335x-prul0-fw': Permission.
—denied

Run the following command to set the permissions.

2.6. Blinking an LED a7

PRU Cookbook

bone:~$ sudo chown debian:debian /lib/firmware/am335x-pru*

Running Code on the Al

bone$ make TARGET=hello.prul_1

/var/lib/code-server/common/Makefile:28: MODEL=BeagleBoard.org_BeagleBone_AI,
—TARGET=hello.prul_1

= Stopping PRU 1_1

CC hello.prul_1l.c

”/var/lib/code-server/common/prugpio.h”, line 4: warning #1181-D: #warning.
—~directive: "Found AI”

LD /tmp/code-server—-examples/hello.prul_1.o

= copying firmware file /tmp/code-server—-examples/hello.prul_1.out to /lib/
—firmware/am57xx—-prul_1-fw

write_init_pins.sh

writing "none” to ”/sys/class/leds/beaglebone:green:usr3/trigger”

= Starting PRU 1_1

MODEL = BeagleBoard.org_BeagleBone_ AT
PROC = pru
PRUN =11

PRU_DIR = /dev/remoteproc/prussl-corel
rm /tmp/code-server—-examples/hello.prul_1.o

Look quickly and you will see the USR3 LED blinking.

Later sections give more details on how all this works.

48 Chapter 2. Getting Started

Chapter 3

Running a Program; Configuring Pins

There are a lot of details in compiling and running PRU code. Fortunately those details are captured in a
common Makefile that is used throughout this book. This chapter shows how to use the Makefile to compile
code and also start and stop the PRUs.

Note: The following are resources used in this chapter:
* PRU Code Generation Tools - Compiler
* PRU Software Support Package
¢ PRU Optimizing C/C++ Compiler
¢ PRU Assembly Language Tools
* AM572x Technical Reference Manual (Al)

e AM335x Technical Reference Manual (All others)

3.1 Getting Example Code

3.1.1 Problem

I want to get the files used in this book.

3.1.2 Solution

It's all on a GitHub repository.

bone$ cd /opt/source

bone$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone$ cd pru-cookbook-code

bone$ sudo ./install.sh

Todo: The version of code used needs to be noted in the documentation.

Todo: Why is this documented in multiple places?

49

https://www.ti.com/tool/PRU-CGT
http://git.ti.com/pru-software-support-package
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73

PRU Cookbook

3.2 Compiling with clpru and Inkpru

3.2.1 Problem

You need details on the ¢ compiler, linker and other tools for the PRU.

3.2.2 Solution

The PRU compiler and linker are already installed on many images. They are called clpru and 1nkpru. Do
the following to see if c1lpru is installed.

bone$ which clpru
/usr/bin/clpru

Tip: |If clpru isn't installed, follow the instructions at https://elinux.org/Beagleboard:BeagleBoneBlack_
Debian#TI_PRU_Code_Generation_Tools to install it.

bone$ sudo apt update
bone$ sudo apt install ti-pru-cgt-installer

Details on each can be found here:
¢ PRU Optimizing C/C++ Compiler
¢ PRU Assembly Language Tools

In fact there are PRU versions of many of the standard code generation tools.

code tools

bone$ 1s /usr/bin/*pru

/usr/bin/abspru /usr/bin/clistpru /usr/bin/hexpru /usr/bin/ofdpru
/usr/bin/acpiapru /usr/bin/clpru /usr/bin/ilkpru /usr/bin/optpru
/usr/bin/arpru /usr/bin/dempru /usr/bin/libinfopru /usr/bin/rc_test_
—encoders_pru

/usr/bin/asmpru /usr/bin/dispru /usr/bin/lnkpru /usr/bin/strippru
/usr/bin/cgpru /usr/bin/embedpru /usr/bin/nmpru /usr/bin/xrefpru

See the PRU Assembly Language Tools for more details.

3.3 Making sure the PRUs are configured

3.3.1 Problem

When running the Makefile for the PRU you get and error about /dev/remoteproc is missing.

3.3.2 Solution

Edit /boot /uEnv.txt and enble pru_rproc by doing the following.

bone$ sudo vi /boot/uEnv.txt

Around line 40 you will see:

50 Chapter 3. Running a Program; Configuring Pins

https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools
https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf

PRU Cookbook

###pru_rproc (4.19.x-ti kernel)
uboot_overlay_pru=AM335X-PRU-RPROC-4-19-TI-00A0.dtbo

Uncomment the uboot_overlay line as shown and then reboot. /dev/remoteproc should now be
there.

bone$ sudo reboot

bone$ 1s -1s /dev/remoteproc/

total O

0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-coreO -> /sys/class/
—remoteproc/remoteprocl

0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-corel —-> /sys/class/
—remoteproc/remoteproc?

3.4 Compiling and Running

3.4.1 Problem

| want to compile and run an example.

3.4.2 Solution

Change to the directory of the code you want to run.

bone$ cd pru-cookbook-code/061io
bone$ 1s
gpio.pru0.c Makefile setup.sh

Source the setup file.

bone$ source setup.sh
TARGET=gpio.prul
PocketBeagle Found

P2_05
Current mode for P2_05 is: gpio
Current mode for P2_05 is: gpio

Now you are ready to compile and run. This is automated for you in the Makefile

bone$ make

/opt/source/pru-cookbook—code/common/Makefile:27: MODEL=TI_AM335x_BeagleBone_
—Green_Wireless, TARGET=gpio.prul, COMMON=/opt/source/pru-cookbook—-code/common
= Stopping PRU O

CC gpio.prul.c

” /opt/source/pru-cookbook-code/common/prugpio.h”, line 53: warning #1181-D:
—#warning directive: "Found else”

LD /tmp/vsx—examples/gpio.pru0.o

= copying firmware file /tmp/vsx—examples/gpio.prul.out to /lib/firmware/
—am335x—prul—fw

= Starting PRU O

write_init_pins.sh

MODEL = TI_AM335x_BeagleBone_Green_Wireless
PROC = pru

PRUN =0

PRU_DIR = /sys/class/remoteproc/remoteprocl

rm /tmp/vsx—examples/gpio.prul.o

Congratulations, your are now running a PRU. If you have an LED attached to P9_ 11 on the Black, or P2_05
on the Pocket, it should be blinking.

3.4. Compiling and Running 51

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PRU Cookbook

3.4.3 Discussion

The setup. sh file sets the TARGET to the file you want to compile. Set it to the filename, without the . c
extension (gpio.pru0). The file extension .pru0 specifies the number of the PRU you are using (either
1.0,1_1,2_0,2_1ontheAlor O or 1 on the others)

You can override the TARGET on the command line.

bone$ cp gpio.prulO.c gpio.prul.c
bone$ export TARGET=gpio.prul

Notice the TARGET doesn’t have the . c on the end.
You can also specify them when running make.

bone$ cp gpio.prul.c gpio.prul.c
bone$ make TARGET=gpio.prul

The setup file also contains instructions to figure out which Beagle you are running and then configure the pins
accordingly.

Listing 3.1: setup.sh
#!/bin/bash

export TARGET=gpio.prul
echo TARGET=S$TARGET

Configure the PRU pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n Smachine

if [Smachine = ”"Black”]; then
echo ” Found”
pins="P9_11"

elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""

elif [Smachine = "PocketBeagle”]; then
echo ” Found”
pins="P2_05"

else
echo ” Not Found”
pins=""

fi

for pin in S$pins

do
echo Spin
config-pin $pin gpio
config-pin -g Spin
done
setup.sh
Line Explanation
2-5 Set which PRU to use and which file to compile.
7 Figure out which type of Beagle we have.
9-21 Based on the type, set the pins.

23-28 Configure (set the pin mux) for each of the pins.

Tip: The BeagleBone Al has it's pins preconfigured at boot time, so there’s no need to use config-pin.

52 Chapter 3. Running a Program; Configuring Pins

PRU Cookbook

The Makefile stops the PRU, compiles the file and moves it where it will be loaded, and then restarts the
PRU.

3.5 Stopping and Starting the PRU

3.5.1 Problem

| want to stop and start the PRU.

3.5.2 Solution

It's easy, if you already have TARGET set up:

bone$ make stop

= Stopping PRU O

stop

bone$ make start

= Starting PRU O

start

See dmesg Hw to see how to tell if the PRU is stopped.

This assumes TARGET is set to the PRU you are using. If you want to control the other PRU use:

bone$ cp gpio.prulO.c gpio.prul.c
bone$ make TARGET=gpio.prul

bone$ make TARGET=gpio.prul stop
bone$ make TARGET=gpio.prul start

3.6 The Standard Makefile

3.6.1 Problem

There are all sorts of options that need to be set when compiling a program. How can | be sure to get them all
right?

3.6.2 Solution

The surest way to make sure everything is right is to use our standard Makefile.

3.6.3 Discussion

It's assumed you already know how Makefiles work. If not, there are many resources online that can bring you
up to speed. Here is the local Makefile used throughout this book.
Listing 3.2: Local Makefile

include /opt/source/pru-cookbook-code/common/Makefile

Makefile

Each of the local Makefiles refer to the same standard Makefile. The details of how the Makefile works is beyond
the scope of this cookbook.

Fortunately you shouldn’t have to modify the Makefile.

3.5. Stopping and Starting the PRU 53

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

PRU Cookbook

3.7 The Linker Command File - am335x_pru.cmd

3.7.1 Problem

The linker needs to be told where in memory to place the code and variables.

3.7.2 Solution

am335x_pru.cmd is the standard linker command file that tells the linker where to put what for the Bea-
gleBone Black and Blue, and the Pocket. The am57xx_pru.cmd does the same for the Al. «««< HEAD Both
files can be found in /var/lib/code—server/common. ======= Both files can be found in /opt /
source/pru—-cookbook—-code/common. »»»> bf423e10a7d607eb485449d3f53e7823264dfebb

Listing 3.3: am335x_pru.cmd
/

(_)**/

/* AM335x_ PRU.cmd _
=%/

/* Copyright (c) 2015 Texas Instruments Incorporated -
—*/

/* -
Y

/% Description: This file is a linker command file that can be used for .
=%/

Vs linking PRU programs built with the C compiler and -
- */

/™= the resulting .out file on an AM335x device. -
Y

/

(4)***)‘r****************************/

—

=@ /* Link.
—using C conventions */

/* Specify the System Memory Map */

MEMORY
{
PAGE O:
PRU_IMEM : org = 0x00000000 len = 0x00002000 /* 8kB.
—PRUO Instruction RAM */
PAGE 1:
/* RAM */
PRU_DMEM_0_1 : org = 0x00000000 len = 0x00002000 CREGISTER=24 /
—* 8kB PRU Data RAM 0_1 */
PRU_DMEM_1_0 : org = 0x00002000 len =_
—0x00002000 CREGISTER=25 /* 8kB PRU Data RAM 1_0 */
PAGE 2:
PRU_SHAREDMEM : org = 0x00010000 len = 0x00003000 CREGISTER=28.

/* 12kB Shared RAM */

DDR : org = 0x80000000 len =.
—0x00000100 CREGISTER=31
L30CMC : org = 0x40000000 len =.

(continues on next page)

54 Chapter 3. Running a Program; Configuring Pins

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

PRU Cookbook

—~0x00010000

CREGISTER=30

/* Peripherals */

PRU_CFG
~0x00000044
PRU_ECAP
—0x00000060
PRU_IEP
—0x0000031C
PRU_INTC
~0x00001504
PRU_UART
—0x00000038

DCANO
—0x000001E8
DCAN1
—~0x000001E8
DMTIMER2
—0x0000005C
PWMSSO
—-0x000002C4
PWMSS1
—0x000002C4
PWMSS2
—0x000002C4
GEMAC
—0x0000128C
12C1
—0x000000D8
12C2
—0x000000D8
MBXO0
—0x00000140
MCASPO_DMA
—0x00000100
MCSPIO
—~0x000001A4
MCSPI1
—0x000001A4
MMCHSO0
—0x00000300
SPINLOCK
—0x00000880
TPCC
—0x00001098
UART1
—0x00000088
UART2
—0x00000088

RSVD10
—0x00000100
RSVD13
—~0x00000100
RSVD21
—0x00000100
RSVD27
—0x00000100

CREGISTER=4

CREGISTERZS:
CREGISTER=26
CREGISTER=O:

CREGISTER=7

CREGISTER=14
CREGISTER=15
CREGISTER=1:
CREGISTER=18
CREGISTER=19
CREGISTER=20
CREGISTER=9
CREGISTER=2
CREGISTER=17
CREGISTER=22
CREGISTER=8
CREGISTER=6
CREGISTER=16
CREGISTER=5
CREGISTER=2;
CREGISTER=29
CREGISTER=11

CREGISTER=12

CREGISTER=10
CREGISTER=13
CREGISTER=21

CREGISTER=27

or

org =

or

org =

org

org

org

org =

org

org

org

org

org =

org =

org =

org

org

org

org

org =

org =

org

org

org

org

org

org

g

g

0x00030000 len =.

0x00020000 len =.

0x00028000 len =.

0x481CC0O00 len

0x481D0000 len

0x48040000 len =.

0x48300000 len

0x48302000 len

0x48304000 len

0x4A100000 len

0x4802A000 len

0

x4819C000 len

0x480C8000 len

0x46000000 len =.

0x48030000

0x481A0000

0x48060000

0x480CA000 len =_

0x49000000 len

0x48022000 len

0x48024000 len

0x48318000

0x48310000

0x00032400

0x00032000

0x00026000 len

0x0002E000 len

len

len

len

len

(continued from previous page)

(continues on next page)

3.7. The Linker Command File - am335x_pru.cmd

55

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

PRU Cookbook

(continued from previous page)

/* Specify the sections allocation into memory */

SECTIONS {

/* Forces _c_1int00 to the start of PRU IRAM. Not necessary when.

—~loading

an ELF file, but useful when loading a binary */

.text:_c_int00* >

.text >
.stack >
.bss >

.cio >

.data >
.switch >
. sysmem >
.cinit >
.rodata >
.rofardata >
.farbss >
.fardata >

.resource_table > PRU_DMEM_O0_1,
PAGE 1

.init_pins > PRU_DMEM_O0_1,

am335x_pru.cmd

PAGE O

PRU_IMEM, PAGE O
PRU_DMEM_0_1, PAGE 1
PRU_DMEM _0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM _0_1, PAGE 1
PRU_DMEM 0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM_0_1, PAGE 1
PRU_DMEM 0_1, PAGE 1

PAGE 1

Todo: does this need updating?

The cmd file for the Al is about the same, with appropriate addresses for the Al.

3.7.3 Discussion

The important things to notice in the file are given in the following table.

AM335x_PRU.cmd important things

Line Explanation

16 This is where the instructions are stored. See page 206 of the AM335x Technical Reference Manual rev. P Or see page 417 of

AM572x Technical Reference Manual for the Al.

22 This is where PRU 0’s DMEM 0 is mapped. It's also where PRU 1’s DMEM 1 is mapped.
23 The reverse to above. PRU 0’'s DMEM 1 appears here and PRU 1's DMEM 0 is here.

26 The shared memory for both PRU’s appears here.

72 The .text section is where the code goes. It's mapped to IMEM
73 The ((stack)) is then mapped to DMEM 0. Notice that DMEM 0 is one bank

of memory for PRU 0 and another for PRU1, so they both get their own stacks.
74 The .bss section is where the heap goes.

Why is it important to understand this file? If you are going to store things in DMEM, you need to be sure to
start at address 0x0200 since the stack and the heap are in the locations below 0x0200.

3.8

Loading Firmware

56

Chapter 3. Running a Program; Configuring Pins

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
http://www.ti.com/lit/pdf/spruhz6l

PRU Cookbook

3.8.1 Problem

| have my PRU code all compiled and need to load it on the PRU.

3.8.2 Solution

It's a simple three step process.
¢ Stop the PRU
« Write the . out file to the right place in /1ib/firmware
» Start the PRU.

This is all handled in the The Standard Makefile.

3.8.3 Discussion

The PRUs appear in the Linux file space at /dev/remoteproc/.

Finding the PRUs

bone$ cd /dev/remoteproc/
bone$ 1s
pruss—-coreO pruss—-corel

Or if you are on the Al:

bone$ cd /dev/remoteproc/

bone$ 1s

dspl dsp2 ipul ipu2 prussl-core0 prussl-corel pruss2-core0 pruss2-
—corel

You see there that the Al has two pairs of PRUs, plus a couple of DSPs and other goodies.

Here we see PRU 0 and PRU 1 in the path. Let’s follow PRU 0.

bone$ cd pruss—corel
bone$ 1s
device firmware name power state subsystem uevent

Here we see the files that control PRU 0. firmware tells wherein /1ib/firmware to look for the code
to run on the PRU.

bone$ cat firmware
am335x-prul0-fw

Therefore you copy your .out fileto /1lib/firmware/am335x-prul0—-fw.

3.9 Configuring Pins for Controlling Servos

3.9.1 Problem

You want to configure the pins so the PRU outputs are accessible.

3.9. Configuring Pins for Controlling Servos 57

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

PRU Cookbook

3.9.2 Solution

It depends on which Beagle you are running on. If you are on the Al or Blue, everything is already configured
for you. If you are on the Black or Pocket you’ll need to run the following script.

Listing 3.4: servos_setup.sh

#!/bin/bash

Configure the PRU pins based on which Beagle is running
machine=$(awk '{print S$NF}' /proc/device-tree/model)

echo —-n Smachine

if [S$machine = "Black”]; then
echo ” Found”
pins="P8_27 P8_28 P8_29 P8_30 P8_39 P8_40 P8_41 P8_42"
elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""
elif [Smachine = "PocketBeagle”]; then
echo ” Found”
pins="P2_35 P1_35 P1_02 P1_04"
else
echo ” Not Found”
pins=""
fi

for pin in S$Spins

do
echo $pin
config-pin S$pin pruout
config-pin —-g S$pin
done

servos_setup.sh

3.9.3 Discussion

The first part of the code looks in /proc/device-tree/model to see which Beagle is running. Based
on that it assigns pins a list of pins to configure. Then the last part of the script loops through each of the
pins and configures it.

3.10 Configuring Pins for Controlling Encoders

3.10.1 Problem

You want to configure the pins so the PRU inputs are accessible.

3.10.2 Solution

It depends on which Beagle you are running on. If you are on the Al or Blue, everything is already configured
for you. If you are on the Black or Pocket you'll need to run the following script.

Listing 3.5: encoder_setup.sh

#!/bin/bash
Configure the pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n Smachine
(continues on next page)

58 Chapter 3. Running a Program; Configuring Pins

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

PRU Cookbook

Configure eQFEP pins

if [$machine = "Black”]; then

echo ” Found”

pins="P9_92 P9_27 P8_35 P8_33 P8_12 P8_11 P8_41
elif [Smachine = ”"Blue”]; then

echo ” Found”

pins=""
elif [Smachine = "PocketBeagle”]; then

echo ” Found”

pins="P1_31 P2_34 P2_10 P2_24 P2_33”"
else

echo ” Not Found”

pins=""
fi

for pin in S$pins

do
echo Spin
config-pin $pin gep
config-pin —-g Spin
done

R
Configure PRU pins
if [$machine = "Black”]; then

echo ” Found”

pins="P8_16 P8_15"

elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""
elif [Smachine = "PocketBeagle”]; then
echo ” Found”
pins="P2_09 P2_18"
else
echo ” Not Found”
pins=""
fi

for pin in S$pins

do
echo Spin
config-pin $pin pruin
config-pin —-g Spin
done

encoder_setup.sh

3.10.3 Discussion

pPg8_42"

(continued from previous page)

This works like the servo setup except some of the pins are configured as to the hardware eQEPs and other to

the PRU inputs.

3.10. Configuring Pins for Controlling Encoders

59

PRU Cookbook

60 Chapter 3. Running a Program; Configuring Pins

Chapter 4

Debugging and Benchmarking

One of the challenges is getting debug information out of the PRUs since they don’'t have a traditional
printf (). In this chapter four different methods are presented that I've found useful in debugging. The
first is simply attaching an LED. The second is using dmesg to watch the kernel messages. prudebug, a
simple debugger that allows you to inspect registers and memory of the PRUs, is then presented. Finally, using
one of the UARTS to send debugging information out a serial port is shown.

4.1 Debugging via an LED

4.1.1 Problem

| need a simple way to see if my program is running without slowing the real-time execution.

4.1.2 Solution

One of the simplest ways to do this is to attach an LED to the output pin and watch it flash. LED used for
debugging P9_29 shows an LED attached to pin P9_29 of the BeagleBone Black.

Make sure you have the LED in the correct way, or it won't work.

4.1.3 Discussion

If your output is changing more than a few times a second, the LED will be blinking too fast and you'll need an
oscilloscope or a logic analyzer to see what's happening.

Another useful tool that let’'s you see the contents of the registers and RAM is discussed in prudebug - A Simple
Debugger for the PRU.

4.2 dmesg Hw

4.2.1 Problem

I'm getting an error message (/sys/devices/platform/ocp/4a326000.pruss—soc—bus/
4a300000.pruss/4a334000.prul/remoteproc/remoteprocl/state: Invalid ar-—
gument) when | load my code, but don’t know what'’s causing it.

61

PRU Cookbook

© o 0 0 0 o o 0 00
® o 0 0 0 o o 0 00

‘T

BeagleBone

o o 0 0 0
e o 0 0 0
© 8 0 0 0 0 0 0 0 0 0 08 000000000 0000000000o0

fritzing

Fig. 4.1: LED used for debugging P9 _29

4.2.2 Solution

The command dme sg outputs useful information when dealing with the kernel. Simply running dmesg —Hw
can tell you a lot. The —H flag puts the dates in the human readable form, the —w tells it to wait for more
information. Often I'll have a window open running dmesg —Hw.

Here’'s what dme sg said for the example above.

Hw

4.3 dmesg

[+0.000018] remoteproc remoteprocl: header-less resource table
[+0.011879] remoteproc remoteprocl: Failed to find resource table
[+0.008770] remoteproc remoteprocl: Boot failed: -22

It quickly told me | needed to add the line #include "resource_table_empty.h” to my code.

4.4 prudebug - A Simple Debugger for the PRU

4.4.1 Problem

You need to examine registers and memory on the PRUs.

4.4.2 Solution

prudebug is a simple debugger for the PRUs that lets you start and stop the PRUs and examine the registers
and memory. It can be found on GitHub https://github.com/RRvW/prudebug-rl. | have a version | updated to
use byte addressing rather than word addressing. This makes it easier to work with the assembler output. You

62 Chapter 4. Debugging and Benchmarking

https://github.com/RRvW/prudebug-rl

PRU Cookbook

can find it in my GitHub BeagleBoard repo https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/
pru/prudebug.

Just download the files and type make.

4.4.3 Discussion

Once prudebug is installed is rather easy to use.

Note: prudebug has now been ported to the Al.

Todo: Isn’t working on Pocket at this time.

bone$ *sudo prudebug*

PRU Debugger v0.25

(C) Copyright 2011, 2013 by Arctica Technologies. All rights reserved.
Written by Steven Anderson

Using /dev/mem device.

Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

offsets below are in 32-bit byte addresses (not ARM byte addresses)

PRU Instruction Data Ctrl
0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000

You get help by entering he 1p. You cal also enter hb to get a brief help.

PRUO> *hb*
Command help

BR [breakpoint_number [address]] - View or set an instruction breakpoint

D memory_location_ba [length] - Raw dump of PRU data memory (32-bit byte.
—offset from beginning of full PRU memory block - all PRUs)

DD memory_location_ba [length] - Dump data memory (32-bit byte offset.
—from beginning of PRU data memory)

DI memory_location_ba [length] - Dump instruction memory (32-bit byte.
—~offset from beginning of PRU instruction memory)

DIS memory_location_ba [length] - Disassemble instruction memory (32-bit.
—byte offset from beginning of PRU instruction memory)

G — Start processor execution of instructions (at current IP)

GSS - Start processor execution using automatic single stepping - this.
—allows running a program with breakpoints
HALT - Halt the processor

L memory_location_iwa file_name - Load program file into instruction..
—Mmemory
PRU pru_number - Set the active PRU where pru_number ranges from 0 to 1

Q — Quit the debugger and return to shell prompt.
R - Display the current PRU registers.

RESET - Reset the current PRU

SS - Single step the current instruction.

WA [watch_num [address [value]]] - Clear or set a watch point

WR memory_location_ba valuel [value2 [value3 ...]] - Write a 32-bit.
—value to a raw (offset from beginning of full PRU memory block)

WRD memory_location_ba valuel [value2 [value3 ...]] - Write a 32-bit.

—value to PRU data memory for current PRU

(continues on next page)

4.4. prudebug - A Simple Debugger for the PRU 63

https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug
https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug

PRU Cookbook

(continued from previous page)

WRI memory_location_ba valuel [value2 [value3 ...]] - Write a 32-bit.
—~value to PRU instruction memory for current PRU

Initially you are talking to PRU 0. You can enter pru 1 to talk to PRU 1. The commands | find most useful are,
r, to see the registers.

PRUO> *r*
Register info for PRUO
Control register: 0x00008003
Reset PC:0x0000 RUNNING, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, .
—~PROC_ENABLED

Program counter: 0x0030
Current instruction: ADD RO.b0, RO.b0, RO.bO

Rxx registers not available since PRU is RUNNING.

Notice the PRU has to be stopped to see the register contents.

PRUO> *h¥*
PRUO Halted.
PRUO> *r*
Register info for PRUO
Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING, .
—~PROC_DISABLED

Program counter: 0x0028
Current instruction: LBBO R15, R15, 4, 4

ROO: 0x00000000 R08: 0x00000000 R16: 0x00000001 R24: 0x00000002
RO1: 0x00000000 RO9: Oxaf40dcf2 R17: 0x00000000 R25: 0x00000003
RO2: 0x000000dc R10: 0xd8255blb R18: 0x00000003 R26: 0x00000003
R0O3: 0x000£0000 R11: Oxc50cbefd R19: 0x00000100 R27: 0x00000002
R0O4: 0x00000000 R12: 0xb037c0d7 R20: 0x00000100 R28: 0x8ca9d976
RO5: 0x00000009 R13: 0xf48bbe23 R21: 0x441fb678 R29: 0x00000002
RO6: 0x00000000 R14: 0x00000134 R22: 0xc8cc0752 R30: 0x00000000
RO7: 0x00000009 R15: 0x00000200 R23: Oxe346fee9 R31: 0x00000000

You can resume using g which starts right where you left off, or use reset to restart back at the beginning.

The dd command dumps the memory. Keep in mind the following.

Table 4.1: Important memory locations

Address Contents
0x00000 Start of the stack for PRU 0. The file AM335x_PRU.cmd specifies where the stack is.
0x00100 Start of the heap for PRU 0.
0x00200 Start of DRAM that your programs can use. The Makefile specifies
the size of the stack and the heap.
0x10000 Start of the memory shared between the PRUSs.

Using dd with no address prints the next section of memory.

PRUO> *dd*

dd

Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000

64 Chapter 4. Debugging and Benchmarking

PRU Cookbook

The stack grows from higher memory to lower memory, so you often won’t see much around address 0x0000.

PRUO> *dd 0x100*

dd 0x100

Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000001 0x00000002 0x00000003 0x00000004
[0x0110] 0x00000004 0x00000003 0x00000002 0x00000001
[0x0120] 0x00000001 0x00000000 0x00000000 0x00000000
[0x0130] 0x00000000 0x00000200 0x862e5cl8 Oxfeb2laca
Here we see some values on the heap.

PRUO> *dd 0x200%*

dd 0x200

Absolute addr = 0x0200, offset = 0x0000, Len = 16
[0x0200] 0x00000001 0x00000004 0x00000002 0x00000003
[0x0210] 0x00000003 0x00000011 0x00000004 0x00000010
[0x0220] 0x0a4fe833 0xb222ebda 0xe5575236 0xc50cbefd
[0x0230] 0xb037c0d7 0xf48bbe23 0x88c460f0 0x011550d4
Data written explicitly to 0x0200 of the DRAM.

PRUO> *dd 0x10000%*

dd 0x10000

Absolute addr = 0x10000, offset = 0x0000, Len = 16

[0x10000] 0x8ca9d976 Oxebcbll9e 0x3aebce3l 0x68c44d8b
[0x10010] Oxc370ba77e 0x2fea993b 0x15c67fab5 0xfbf68557
[0x10020] 0x5ad81b4f 0x4a55071a 0x48576eb7 0x1004786b
[0x10030] 0x2265ebc6 0xa27b32a0 0x340d34dc Oxbfal02d4b

Here’s the shared memory.

You can also use prudebug to set breakpoints and single step, but | haven’t used that feature much.

Memory Allocation gives examples of how you can control where your variables are stored in memory.

4.5 UART

4.5.1 Problem

I'd like to use something like printf () to debug my code.

Todo: Check these on the Black and Pocket without grove

4.5.2 Solution

One simple, yet effective approach to ‘printing’ from the PRU is an idea taken from the Adruino playbook; use
the UART (serial port) to output debug information. The PRU has it's own UART that can send characters to a

serial port.

You'll need a 3.3V FTDI cable to go between your Beagle and the USB port on your host computer as shown in

FTDI cable.* you can get such a cable from places such as Sparkfun or Adafruit.

1 FTDI images are from the BeagleBone Cookbook

4.5. UART 65

https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
http://shop.oreilly.com/product/0636920033899.do

PRU Cookbook

Fig. 4.2: FTDI cable

66 Chapter 4. Debugging and Benchmarking

PRU Cookbook

4.5.3 Discussion

The Beagle side of the FTDI cable has a small triangle on it as shown in FTD/ connector which marks the ground
pin, pin 1.

Fig. 4.3: FTDI connector

The Wring for FTDI cable to Beagle table shows which pins connect where and FTDI/ to BB Black is a wiring
diagram for the BeagleBone Black.

Table 4.2: Wring for FTDI cable to Beagle

FTDI pin Color Black pin Al 1 pin Al 2 pin Pocket Function

0 black P9 1 P8_1 P8_1 P1_16 ground
4 orange P9_24 P8_43 P8_33a P1_12 rx
5 yellow P9 26 P8_44 P8 3la P1 06 tx

4.5.4 Details

Two examples of using the UART are presented here. The first (vartl.prul 0.c) sends a character out the serial
port then waits for a character to come in. Once the new character arrives another character is output.

The second example (uart2.prul_0.c) prints out a string and then waits for characters to arrive. Once an ENTER
appears the string is sent back.

Tip: On the Black, either PRUO and PRU1 can run this code. Both have access to the same UART.

You need to set the pin muxes.

4.5. UART 67

PRU Cookbook

© o 0 0 0 o o 0 00
® o 0 0 0 o o 0 00

BeagleBone

o o 0 0 0
e o 0 0 0

fritzing

Fig. 4.4: FTDI to BB Black

4.5.5 config-pin

Configure tx Black
bone$ *config-pin P9_24 pru_uart*
Configure rx Black
bone$ *config-pin P9_26 pru_uart*

Configure tx Pocket
bone$ *config-pin P1_06 pru_uart*
Configure rx Pocket
bone$ *config-pin P1_12 pru_uart*

Note: See Configuring pins on the Al via device trees for configuring pins on the Al. Make sure your rx pins
are configured as input pins in the device tree.

For example

DRA7XX_CORE_IOPAD (0x3610, *PIN_INPUT* | MUX_MODE10) // C6: P8.33a:

Todo: Add code for Blue.

Listing 4.1: uartl.prul_0.c

// From: http://git.ti.com/pru-software-support-package/pru-software—-support—
—package/trees/master/examples/am335x/PRU_Hardware_ UART
// This example was converted to the am5729 by changing the names in pru_
—uart.h
// for the am335x to the more descriptive names for the amb5729.
// For example DLL convertes to DIVISOR _REGISTER LSB_

(continues on next page)

68 Chapter 4. Debugging and Benchmarking

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

PRU Cookbook

(continued from previous page)
#include <stdint.h>
#include <pru_uart.h>
#include ”resource_table empty.h”

/* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
* only going to send 8 at a time */

#define FIFO_SIZE 16

#define MAX_ CHARS 8

void main (void)

{
uint8_t tx;
uint8_t rx;
uint8_t cnt;

/* hostBuffer points to the string to be printed */
char* hostBuffer;

/*** INITIALIZATION ***/

/* Set up UART to function at 115200 baud - DLL divisor is 104 at.
—16x oversample
* 192MHz / 104 / 16 = ~115200 */
CT_UART.DIVISOR_REGISTER_LSB_ = 104;
CT_UART.DIVISOR_REGISTER_MSB_ = 0;
CT_UART.MODE_DEFINITION_REGISTER = 0x0;

/* Enable Interrupts in UART module. This allows the main thread to.
—poll for
* Receive Data Available and Transmit Holding Register Empty */
CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;

/* If FIFOs are to be used, select desired trigger level and enable
* FIFOs by writing to FCR. FIFOEN bit in FCR must be set first.
—before
* other bits are configured */
/* Enable FIFOs for now at l-byte, and flush them */
CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =.
—(0x8) | (0x4) | (0x2) | (0x1);
//CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO.
~trigger

/* Choose desired protocol settings by writing to LCR */

/* 8-bit word, 1 stop bit, no parity, no break control and no.
—divisor latch */

CT_UART.LINE_CONTROL_REGISTER = 3;

/* Enable loopback for test */
CT_UART.MODEM_CONTROL_REGISTER = 0x00;

/* Choose desired response to emulation suspend events by configuring
* FREE bit and enable UART by setting UTRST and URRST in PWREMU._
—MGMT */
/* Allow UART to run free, enable UART TX/RX */
CT_UART .POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;

/*** END INITIALIZATION ***/

/* Priming the 'hostbuffer' with a message */
hostBuffer = "Hello! This is a long string\r\n”;

(continues on next page)

4.5. UART 69

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

PRU Cookbook

(continued from previous page)
/*** SEND SOME DATA ***/

/* Let's send/receive some dummy data */
while (1) {
cnt = 0;
while (1) {
/* Load character, ensure it 1s not string.
—~termination */
if ((tx = hostBuffer([cnt]) == '\0")
break;
ST AFaF 2
CT_UART.RBR_THR_REGISTERS = tx;

/* Because we are doing loopback, wait until LSR.DR.

* indicating there is data in the RX FIFO */
while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);

/* Read the value from RBR */
rx = CT_UART.RBR_THR_REGISTERS;

/* Wait for TX FIFO to be empty */
while (! ((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_
—FIFO_CONTROL_REGISTER & 0x2) == 0x2));
}
}

/*** DONE SENDING DATA ***/

/* Disable UART before halting */
CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;

/* Halt PRU core */
__halt ();

uartl.prul_0.c

Set the following variables so make will know what to compile.

Listing 4.2: make

bone$ *make TARGET=uartl.pruO*
/opt/source/pru-cookbook—-code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—~Black, TARGET=uartl.prul

= Stopping PRU O

= copying firmware file /tmp/vsx-examples/uartl.pruO.out to /lib/
—~firmware/am335x-prul-fw

write_init_pins.sh

- Starting PRU 0

MODEL = TI_AM335x_BeagleBone_Black
PROC = pru

PRUN =0

PRU_DIR = /dev/remoteproc/pruss—corel

Now make will compile, load PRUO and start it. In a terminal window on your host computer run

host$ *screen /dev/ttyUSBO 115200%

It will initially display the first charters (H) and then as you enter characters on the keyboard, the rest of the
message will appear.

Here's the code (uartl.prul_0.c) that does it.

70 Chapter 4. Debugging and Benchmarking

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

PRU Cookbook

yoder@yoder-VirtualBox: ~/BeagleBoard

File Edit View Search Terminal Help
Hell

Fig. 4.5: uartl.pru0.c output

Listing 4.3: uartl.prul_0O.c

// From: http://git.ti.com/pru-software-support-package/pru-software—support—
—package/trees/master/examples/am335x/PRU_Hardware_UART

// This example was converted to the am5729 by changing the names in pru_
—suart.h

// for the am335x to the more descriptive names for the amb729.

// For example DLL convertes to DIVISOR_REGISTER_LSB_

#include <stdint.h>

#include <pru_uart.h>

#include ”"resource_table_empty.h”

/* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
* only going to send 8 at a time */

#define FIFO_SIZE 16

#define MAX_ CHARS 8

void main (void)

{
uint8_t tx;
uint8_t rx;
uint8_t cnt;

/* hostBuffer points to the string to be printed */
char* hostBuffer;

/*** INITIALIZATION ***/

/* Set up UART to function at 115200 baud - DLL divisor is 104 at.
—16x oversample
* 192MHz / 104 / 16 = ~115200 */
CT_UART.DIVISOR_REGISTER_LSB_ = 104;
CT_UART.DIVISOR_REGISTER_MSB_ = 0;
CT_UART.MODE_DEFINITION_REGISTER = 0x0;

/* Enable Interrupts in UART module. This allows the main thread to.
—poll for
* Receive Data Available and Transmit Holding Register Empty */
CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;

(continues on next page)

4.5. UART 71

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

PRU Cookbook

(continued from previous page)
/* If FIFOs are to be used, select desired trigger level and enable
* FIFOs by writing to FCR. FIFOEN bit in FCR must be set first.
—before
* other bits are configured */
/* Enable FIFOs for now at l-byte, and flush them */
CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =.
—(0x8) | (0x4) | (0x2) | (0x1);
//CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO.
—~trigger

/* Choose desired protocol settings by writing to LCR */

/* 8-bit word, 1 stop bit, no parity, no break control and no.
—~divisor latch */

CT_UART.LINE_CONTROL_REGISTER = 3;

/* Enable loopback for test */
CT_UART.MODEM_CONTROL_REGISTER = 0x00;

/* Choose desired response to emulation suspend events by configuring
* FREE bit and enable UART by setting UTRST and URRST in PWREMU._
<MGMT */
/* Allow UART to run free, enable UART TX/RX */
CT_UART .POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;
/*** END INITIALIZATION ***/

/* Priming the 'hostbuffer' with a message */
hostBuffer = "Hello! This is a long string\r\n”;

/*** SEND SOME DATA ***/

/* Let's send/receive some dummy data */

while (1) {
cnt = 0;
while (1) {

/* Load character, ensure it 1S not string.
stermination */
if ((tx = hostBuffer[cnt]) == '\0")
break;
cnt++;
CT_UART.RBR_THR_REGISTERS = tx;

/* Because we are doing loopback, wait until LSR.DR.

* indicating there is data in the RX FIFO */
while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);

/* Read the value from RBR */
rx = CT_UART.RBR_THR_REGISTERS;

/* Wait for TX FIFO to be empty */
while (! ((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_
—FIFO_CONTROL_REGISTER & 0x2) == 0x2));
}
}

/*** DONE SENDING DATA ***/

/* Disable UART before halting */
CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0xO0;

(continues on next page)

72 Chapter 4. Debugging and Benchmarking

PRU Cookbook

(continued from previous page)

/* Halt PRU core */
__halt ();

uartl.prul_O0.c

Note: |'m using the Al version of the code since it uses variables with more desciptive names.

The first part of the code initializes the UART. Then the line CT_UART.RBR_THR_REGISTERS = tx;
takes a character in tx and sends it to the transmit buffer on the UART. Think of this as the UART version of
the printf ().

Laterthelinewhile (! ((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER
& 0x2) == 0x2)); waits for the transmitter FIFO to be empty. This makes sure later characters won't

overwrite the buffer before they can be sent. The downside is, this will cause your code to wait on the buffer

and it might miss an important real-time event.

The line while ((CT_UART.LINE_STATUS_REGISTER & 0Ox1) == 0x0); waits for an input
from the UART (possibly missing something) and rx = CT_UART.RBR_THR_REGISTERS; reads from

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

the receive register on the UART.

These simple lines should be enough to place in your code to print out debugging information.

Listing 4.4: uart2.pru0.c

// From: http://git.ti.com/pru-software-support-package/pru-software-support—

wpackage/trees/master/pru_cape/pru_fw/PRU_Hardware_UART

#include <stdint.h>

#include <pru_uart.h>

#include ”resource_table_empty.h”

/* The FIFO size on the PRU UART is 16 bytes; however,

* only going to send 8 at a time */

#define FIFO_SIZE 16

#define MAX_ CHARS 8

#define BUFFER 40

//
(_)**
// Print Message Out

// This function take in a string literal of any size and then fill the

// TX FIFO when it's empty and waits until there is info in the RX FIFO

/7 before returning.

//

(_)**

void PrintMessageOut (volatile char* Message)

we are (arbitrarily)

{
uint8_t cnt, index = 0;
while (1) {
cnt = 0;
/* Wait until the TX FIFO and the TX SR are completely empty.
o */
while (!CT_UART.LSR_bit.TEMT) ;
while (Message[index] != NULL && cnt < MAX_CHARS) {
CT_UART.THR = Message[index];
index++;
(continues on next page)
4.5. UART 73

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

PRU Cookbook

(continued from previous page)

cnt++;

t

if (Message[index] == NULL)
break;

}

/* Wait until the TX FIFO and the TX SR are completely empty */
while (!CT_UART.LSR_bit.TEMT);

3

//
;}**
// IEP Timer Config

// This function waits until there is info in the RX FIFO and then.
—returns

// the first character entered.

//

Ly K E R Rk ok o ok ok Sk ok Sk ok S b ok o ok o ok ok ok Sk ok Sk ok Sk ok Sk b ok o ok o ok ok ok Sk ok ok b ok o ok o ok o ok o ok ok Sk ok Sk ok Sk o ok b ok R ok ok R ok Sk Rk ok ok

char ReadMessagelIn (void)

{
while (!CT_UART.LSR_bit.DR);

return CT_UART.RBR_bit .DATA;
}

void main (void)
{
uint32_t 1i;
volatile uint32_t not_done = 1;

char rxBuffer [BUFFER];
rxBuffer [BUFFER-1] = NULL; // null terminate the string

/*** INITIALIZATION ***/

/* Set up UART to function at 115200 baud - DLL divisor is 104 at.
—~16x oversample
* 192MHz / 104 / 16 = ~115200 */
CT_UART.DLL = 104;
CT_UART.DLH = 0;
CT_UART.MDR_Dbit.OSM_SEL = 0x0;

/* Enable Interrupts in UART module. This allows the main thread to.
—poll for
* Receive Data Available and Transmit Holding Register Empty */
CT_UART.IER = 0x7;

/* If FIFOs are to be used, select desired trigger level and enable
* FIFOs by writing to FCR. FIFOEN bit in FCR must be set first.
—~before
* other bits are configured */
/* Enable FIFOs for now at l-byte, and flush them */
CT_UART.FCR = (0x80) | (0x8) | (0x4) | (0x2) | (0x01l); // 8-byte RX.
—FIFO trigger

/* Choose desired protocol settings by writing to LCR */

/* 8-bit word, 1 stop bit, no parity, no break control and no.
—divisor latch */

CT_UART.LCR = 3;

(continues on next page)

74 Chapter 4. Debugging and Benchmarking

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

PRU Cookbook

/* If flow control is desired write appropriate values to MCR.

/* No flow control for now, but enable loopback for test */

CT_UART.MCR = 0x00;

(continued from previous page)

*/

/* Choose desired response to emulation suspend events by configuring
* FREE bit and enable UART by setting UTRST and URRST in PWREMU_

<MGMT */

/* Allow UART to run free,
PWREMU_MGMT_.
PWREMU_MGMT_
PWREMU_MGMT_ .

CT_UART.
CT_UART.
CT_UART.

/* Turn off RTS and
CT_UART.MCR_bit .AFE
CT_UART.MCR_bit .RTS

enable UART TX/RX */

bit .FREE = 0x1;
bit .URRST = 0x1;
bit .UTRST = 0x1;

CTS functionality */
= 0x0;
= 0x0;

/*** END INITIALIZATION ***/

while (1) {

/* Print out greeting message */
PrintMessageOut ("Hello you are in the PRU UART demo test.
—~please enter some characters\r\n”);

/* Read in characters from user,

for (i = 0;

i < BUFFER-1 ; i++) {
rxBuffer[i] = ReadMessageln() ;
if (rxBuffer[i] == '"\r') {

—ENTER is hit.

}

rxBuffer[i+l] =
break;

NULL;

PrintMessageOut ("you typed:\r\n”);
PrintMessageOut (rxBuffer) ;
PrintMessageOut (”\x\n”) ;

}

/*** DONE SENDING DATA

***/

/* Disable UART before halting */

CT_UART.PWREMU_MGMT

/* Halt PRU core */
__halt ();

uart2.prul.c

= 0x0;

If you want to try uart2.pru0. c, run the following

Listing 4.5: make

bone$ *make TARGET=uart2.prul*
/opt/source/pru-cookbook—-code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_

—Black, TARGET=uart2.prul
= Stopping PRU O

then echo them back out */

// Quit early if.

= copying firmware file /tmp/vsx—-examples/uart2.prul.out to /lib/

—firmware/am335x-prul-fw
write_init_pins.sh
= Starting PRU 0
MODEL =

PROC = pru

TI_AM335x_BeagleBone_Black

(continues on next page)

4.5. UART

75

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

PRU Cookbook

(continued from previous page)
PRUN =0
PRU_DIR /dev/remoteproc/pruss—corel

You will see:

yoder@yoder-VirtualBox: ~/BeagleBoard
File Edit View Search Terminal Help
Hello you are in the PRU UART demo test please enter some characters

you typed:
This is a test!

Hello you are in the PRU UART demo test please enter some characters

Fig. 4.6: uart2.pru0.c output

Type a few characters and hit ENTER. The PRU will playback what you typed, but it won’t echo it as you type.

uart2.prul.c defines PrintMessageOut () which is passed a string that is sent to the UART. It
takes advantage of the eight character FIFO on the UART. Be careful using it because it also uses while (!
CT_UART.LSR_bit.TEMT) ; towaitforthe FIFO to empty, which may cause your code to miss something.

uart2.prul 0.c is the code that does it.

Listing 4.6: uart2.prul_0.c

// From: http://git.ti.com/pru-software-support-package/pru-software—support—
—package/trees/master/pru_cape/pru_fw/PRU_Hardware_UART

#include <stdint.h>
#include <pru_uart.h>
#include ”resource_table_empty.h”

/* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
* only going to send 8 at a time */

#define FIFO_SIZE 16

#define MAX_ CHARS 8

#define BUFFER 40

//
(‘)**
// Print Message Out

// This function take in a string literal of any size and then fill the

// TX FIFO when it's empty and waits until there is info in the RX FIFO

// before returning.

//

ey KA Rk Sk b o ok ok o b ok ok S b b ok ok o b b ok ok o o b ok ok o o ok ok ok b o ok ok ok b o ok ok ok b o ok ok ok b o ok ok ok b b ok ok ok b ok sk b b sk ok b o ok ok o ot ok

void PrintMessageOut (volatile char* Message)

{

uint8_t cnt, index = 0;

while (1) A
cnt = 0;

(continues on next page)

76 Chapter 4. Debugging and Benchmarking

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

PRU Cookbook

(continued from previous page)
/* Wait until the TX FIFO and the TX SR are completely empty.

V4
while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
while (Message[index] != NULL && cnt < MAX_CHARS) {
CT_UART.RBR_THR_REGISTERS = Message[index];
index++;
ST AFF 2
t
if (Message[index] == NULL)
break;
}
/* Wait until the TX FIFO and the TX SR are completely empty */
while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
I3
//
(_)**
// IEP Timer Config
// This function waits until there is info in the RX FIFO and then.
—sreturns
// the first character entered.
//

Ly AR AR A A A AR A A A Ak

char ReadMessagelIn (void)

{
while (!CT_UART.LINE_STATUS_REGISTER_bit.DR);

return CT_UART.RBR_THR_REGISTERS_bit .DATA;

void main (void)
{
uint32_t i;
volatile uint32_t not_done = 1;

char rxBuffer [BUFFER];
rxBuffer [BUFFER-1] = NULL; // null terminate the string

/*** INITIALIZATION ***/

/* Set up UART to function at 115200 baud - DLL divisor is 104 at.
—~16x oversample
* 192MHz / 104 / 16 = ~115200 */
CT_UART.DIVISOR_REGISTER_LSB_ = 104;
CT_UART.DIVISOR_REGISTER_MSB_ 0;
CT_UART.MODE_DEFINITION_REGISTER _bit.OSM_SEL = 0x0;

/* Enable Interrupts in UART module. This allows the main thread to.
—poll for
* Receive Data Available and Transmit Holding Register Empty */
CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;

/* If FIFOs are to be used, select desired trigger level and enable
* FIFOs by writing to FCR. FIFOEN bit in FCR must be set first.
—before
* other bits are configured */
/* Enable FIFOs for now at l-byte, and flush them */
CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =_

(continues on next page)

4.5. UART 77

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

PRU Cookbook

(continued from previous page)
— (0x80) | (0x8) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO trigger

/* Choose desired protocol settings by writing to LCR */

/* 8-bit word, 1 stop bit, no parity, no break control and no.
—~divisor latch */

CT_UART.LINE_CONTROL_REGISTER = 3;

/* If flow control is desired write appropriate values to MCR. */
/* No flow control for now, but enable loopback for test */
CT_UART.MODEM_CONTROL_REGISTER = 0x00;

/* Choose desired response to emulation suspend events by configuring
* FREE bit and enable UART by setting UTRST and URRST in PWREMU_
<MGMT */
/* Allow UART to run free, enable UART TX/RX */
CT_UART .POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.FREE = 0x1;
CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.URRST = 0x1;
CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.UTRST = O0x1;

/* Turn off RTS and CTS functionality */
CT_UART.MODEM_CONTROL_REGISTER_bit.AFE = 0x0;
CT_UART.MODEM_CONTROL_REGISTER_bit.RTS = 0x0;

/**% END INITIALIZATION ***/

while (1) {
/* Print out greeting message */
PrintMessageOut ("Hello you are in the PRU UART demo test.
—please enter some characters\r\n”);

/* Read 1n characters from user, then echo them back out */
for (i = 0; i < BUFFER-1 ; i++) {

rxBuffer[i] = ReadMessageln () ;
if (rxBuffer([i] == '"\r') { // Quit early if.
ENTER is hit.
rxBuffer[i+1] = NULL;
break;
}

}

PrintMessageOut ("you typed:\r\n”);
PrintMessageOut (rxBuffer) ;
PrintMessageOut (”\r\n”) ;

}

/*** DONE SENDING DATA ***/
/* Disable UART before halting */
CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;

/* Halt PRU core */
__halt();

uart2.prul_0.c

More complex examples can be built using the principles shown in these examples.

Copyright

78 Chapter 4. Debugging and Benchmarking

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PRU Cookbook

Listing 4.7: copyright.c

Copyright (C) 2015 Texas Instruments Incorporated — http://www.ti.com/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in.

R e

!

o
7
o

documentation and/or other materials provided with the
distribution.

% % %

* Neither the name of Texas Instruments Incorporated nor the names.

—of

& its contributors may be used to endorse or promote products.

—derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

R

*/

copyright.c

4.5. UART 79

PRU Cookbook

80 Chapter 4. Debugging and Benchmarking

Chapter 5

Building Blocks - Applications

Here are some examples that use the basic PRU building blocks.

The following are resources used in this chapter.

Note: Resources

¢ PRU Optimizing C/C++ Compiler, v2.2, User’s Guide

AM572x Technical Reference Manual (Al)
e AM335x Technical Reference Manual (All others)

* Exploring BeagleBone by Derek Molloy

WS2812 Data Sheet

5.1 Memory Allocation

5.1.1 Problem

| want to control where my variables are stored in memory.

Todo: Include a section on accessing DDR.

5.1.2 Solution

Each PRU has is own 8KB of data memory (Data MemO and Mem1) and 12KB of shared memory (Shared RAM)
as shown in PRU Block Diagram.

Each PRU accesses its own DRAM starting at location 0x0000_0000. Each PRU can also access the other PRU’s
DRAM starting at 0x0000_2000. Both PRUs access the shared RAM at 0x0001_0000. The compiler can control
where each of these memories variables are stored.

shared.pro0.c - Examples of Using Different Memory Locations shows how to allocate seven variable in six
different locations.

81

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://exploringbeaglebone.com/
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

PRU Cookbook

PRU-ICSS
. | Data MamD
n PRUOD Core S i (8KB)
- (BKEB Program) 4 Data Memi
+ » EGP 10| [MAC |] 2 > (BKB)
Spﬂjﬂ' = [Shared RAM
1 g ¥ (12KB)
o PRU1 Core —» &
- (8KE Program) + g —FI eCAPD |« E
+ » EGP 10| | MAC | g o MioRT |+ .
85— IEP |« >
= 2 INTC s —» UARTO |« >
S CFG [+ .

Fig. 5.1: PRU Block Diagram

Listing 5.1: shared.pro0.c - Examples of Using Different Memory Loca-
tions

// From: http://git.ti.com/pru-software-support-package/pru-software—-support—

—package/blobs/master/examples/am335x/PRU_access_const_table/PRU_access_
—const_table.c

#include <stdint.h>

#include <pru_cfg.h>

#include <pru_ctrl.h>

#include ”resource_table_empty.h”

#define PRU_SRAM __ far __attribute__ ((cregister (”PRU_SHAREDMEM”, near)))
#define PRU_DMEMO __ far __attribute_ ((cregister (”PRU_DMEM 0_1”, near)))
#define PRU_DMEMI1 __far __attribute__ ((cregister (”PRU_DMEM_1_07", near)))

/* NOTE: Allocating shared x to PRU Shared Memory means that other PRU.
—~cores on

5 the same subsystem must take care not to allocate data to that.
—memory.

* Users also cannot rely on where in shared memory these.
—variables are placed

5 so accessing them from another PRU core or from the ARM is an.
—undefined behavior.

*/

volatile uint32_t shared_0;

PRU_SRAM volatile uint32_t shared_1;
PRU_DMEMO volatile uint32_t shared_2;
PRU_DMEM1 volatile uint32_t shared_3;
#pragma DATA_SECTION (shared_4, ”.bss”)
volatile uint32_t shared_4;

/* NOTE: Here we pick where in memory to store shared_ 5. The stack and
2 heap take up the first 0x200 words, so we must start.
—after that.

(continues on next page)

82 Chapter 5. Building Blocks - Applications

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

PRU Cookbook

(continued from previous page)

& Since we are hardcoding where things are stored we can.
—share

* this between the PRUs and the ARM.

*/
#define PRUQO_DRAM 0x00000 // Offset to.
—DRAM

// Skip the first 0x200 bytes of DRAM since the Makefile allocates
// 0x100 for the STACK and 0x100 for the HEAP.
volatile unsigned int *shared_5 = (unsigned int *) (PRUO_DRAM + 0x200);

int main (void)

{
volatile uint32_t shared_6;
volatile uint32_t shared_7;

/***/

/* Access PRU peripherals using Constant Table & PRU header file */
/***/

/* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

/***/

/* Access PRU Shared RAM using Constant Table ¥4

/***/

/* C28 defaults to 0x00000000, we need to set bits 23:8 to 0x0100 in.
—~order to have it point to 0x00010000 74
PRUO_CTRL.CTPPRO_bit.C28_BLK_POINTER = 0x0100;

shared_0 = Oxfeef;

shared_1 = Oxdeadbeef;
shared_2 = shared_2 + Oxfeed;
shared_3 = 0Oxdeed;

shared_4 = Oxbeed;
shared_5[0] = 0x1234;

shared_6 = 0x4321;
shared_7 = 0x9876;

/* Halt PRU core */
__halt ();

shared.pru0l.c

5.1.3 Discussion

Here’s the line-by-line

5.1. Memory Allocation 83

PRU Cookbook

Table 5.1: Line-byline for shared.pru0.c

Line Explanation

7 PRU_SRAM is defined here. It will be used later to declare variables in the Shared RAM location of memory. Section 5.5.2
on page 75 of the PRU Optimizing C/C++ Compiler, v2.2, User’s Guide gives details of the command. The PRU_SHAREDMEM
refers to the memory section defined in am335x_pru.cmd on line 26.

8,9 These are like the previous line except for the DMEM sections.

16 Variables declared outside of main() are put on the heap.

17 Adding PRU_SRAM has the variable stored in the shared memory.

18, These are stored in the PRU’s local RAM.

19

20, These lines are for storing in the .bss section as declared on line 74 of am335x_pru.cmd.

21

28- All the previous examples direct the compiler to an area in memory and the compilers figures out what to put where. With

31 these lines we specify the exact location. Here are start with the PRU_DRAM starting address and add 0x200 to it to avoid the
stack and the heap. The advantage of this technique is you can easily share these variables between the ARM and the two
PRUs.

36, Variable declared inside main() go on the stack.

37

Caution: Using the technique of line 28-31 you can put variables anywhere, even where the compiler has
put them. Be careful, it's easy to overwrite what the compiler has done

Compile and run the program.

bone$ *source shared_setup.sh*
TARGET=shared.pru0
Black Found

P9_31
Current mode for P9_31 is: pruout
Current mode for P9_31 1is: pruout
P9_29
Current mode for P9_29 is: pruout
Current mode for P9_29 is: pruout
P9_30
Current mode for P9_30 is: pruout
Current mode for P9_30 is: pruout
P9_28
Current mode for P9_28 is: pruout
Current mode for P9_28 is: pruout

bone$ *make*

/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—~Black, TARGET=shared.prul

= Stopping PRU O

- copying firmware file /tmp/vsx—examples/shared.pru0O.out to /lib/
—~firmware/am335x-prul-fw

write_init_pins.sh

- Starting PRU O

MODEL = TI_AM335x_BeagleBone_Black

PROC = pru

PRUN =0

PRU_DIR = /sys/class/remoteproc/remoteprocl

Now check the symbol table to see where things are allocated.

bone $ *grep shared /tmp/vsx—examples/shared.pru0.map*
0000011c shared_0O
00010000 shared_1
00000000 shared_2
00002000 shared_3

N S

(continues on next page)

84 Chapter 5. Building Blocks - Applications

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

PRU Cookbook

1 00000118
1 00000120

shared_4
shared_5

(continued from previous page)

We see, shared_0 had no directives and was places in the heap that is 0x100 to 0x1ff. shared_1 was
directed to go to the SHAREDMEM, shared_2 to the start of the local DRAM (which is also the top of the
stack). shared_ 3 was placed in the DRAM of PRU 1, shared_4 was placed in the .bss section, which is

in the heap. Finally shared_5 is a pointer to where the value is stored.

Where are shared_6 and shared_7? They are declared inside main () and are therefore placed on the
stack at run time. The shared.map file shows the compile time allocations. We have to look in the memory

itself to see what happen at run time.

Let’s fire up prudebug (prudebug - A Simple Debugger for the PRU) to see where things are.

bone$ *sudo ./prudebug*

PRU Debugger v0.25

(C) Copyright 2011, 2013 by Arctica Technologies.
Written by Steven Anderson

Using /dev/mem device.

Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

All rights reserved.

offsets below are in 32-bit byte addresses (not ARM byte addresses)

PRU Instruction Data Ctrl
0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000
PRUO> *d 0O*
Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x0000feed 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000
The value of shared_2 is in memory location 0.
PRUO> *dd 0x100*
Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000000 0x00000001 0x00000000 0x00000000
[0x0110] 0x00000000 0x00000000 0x0000beed 0x0000feef
[0x0120] 0x00000200 0Ox3ec7ldel3 0xlall3ela 0xbf2a0lal
[0x0130] 0x111110b0 0x3f811111 0x55555555 0Oxbfc55555

There are shared_0 and shared_4 in the heap, but where is shared_6 and shared_7? They are
supposed to be on the stack that starts at 0.

PRUO> dd
Absolute
[0x00c0]
[0x00d0]
[0x00e0]
[0x00£f0]

There they are; the stack grows from the top. (The heap grows from the bottom.)

PRUO> dd
Absolute
[0x2000]
[0x2010]

0xc0

addr = 0x00c0, offset
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

0x2000~
addr = 0x2000, offset

- 0x0000,
0x00000000
0x00000000
0x00000000
0x00004321

= 0x0000,

Len = 16

0x00000000
0x00000000
0x00000000
0x00009876

Len = 16

0x0000deed 0x00000001 0x00000000 0x557fcfbb

O0xce97bd0f Ox6afb2c8f 0xc7f35df4d O0x5afbédcb

(continues on next page)

5.1. Memory Allocation

85

PRU Cookbook

(continued from previous page)

[0x2020] 0x8dec3da3 0xe39a6756 0x642cb8b8 0xcb6952c0
[0x2030] 0x2f22ebda 0x548d97c5 0x9241786f 0x72dfeb86

And there is PRU 1's memory with shared_ 3. And finally the shared memory.

PRUO> *dd 0x10000*
Absolute addr = 0x10000, offset = 0x0000, Len = 16

[0x10000] Oxdeadbeef 0x0000feed 0x00000000 0x68c44f8b
[0x10010] Oxc372ba7e 0x2ffa993b 0xl1llc66dab Oxfbfe6c5d7
[0x10020] Oxb5ada3fcf 0x4a5d0712 0x48576fb7 0x1004796b
[0x10030] 0x2267ebc6 0xa2793aal 0x100d34dc 0x9cal6dda

The compiler offers great control over where variables are stored. Just be sure if you are hand picking where
things are put, not to put them in places used by the compiler.

5.2 Auto Initialization of built-in LED Triggers

5.2.1 Problem

| see the built-in LEDs blink to their own patterns. How do | turn this off? Can this be automated?

5.2.2 Solution

Each built-in LED has a default action (trigger) when the Bone boots up. This is controlled by /sys/class/
leds.

bone$ *cd /sys/class/leds*

bone$ *1ls*

beaglebone:green:usr0 beaglebone:green:usr?2
beaglebone:green:usrl beaglebone:green:usr3

Here you see a directory for each of the LEDs. Let’s pick USR1.

bone$ *cd beaglebone\:green\:usrl*

bones$ *1ls*

brightness device max_brightness power subsystem trigger uevent
bone$ *cat trigger*

none usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-numlock
kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-
—altlock

kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock *[mmcO]* timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpul activity default-on panic netdev phyOrx phyOtx
phyOassoc phyOradio rfkillO

Notice [mmcO] is in brackets. This means it's the current trigger; it flashes when the built-in flash memory is
in use. You can turn this off using:

bone$ *echo none > trigger*

bone$ *cat trigger*

* [none] * usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-
—numlock

kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-
—altlock

kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock mmcO timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpul activity default-on panic netdev phyOrx phyOtx
phyOassoc phyOradio rfkillO

86 Chapter 5. Building Blocks - Applications

PRU Cookbook

Now it is no longer flashing.

How can this be automated so when code is run that needs the trigger off, it's turned off automatically? Here's
a trick. Include the following in your code.

#pragma DATA_SECTION (init_pins, ”.init_pins”)

#pragma RETAIN (init_pins)

const char init_pins|[] =
”/sys/class/leds/beaglebone:green:usr3/trigger\Onone\0” \
”\0\0”;

Lines 3and 4 declarethe array init_pins tohave anentry whichisthe pathto t rigger and the value that

should be ‘echoed’ into it. Both are NULL terminated. Line 1 says to put this in a section called . init_pins
and line 2 says to RETAIN it. That is don't throw it away if it appears to be unused.

5.2.3 Discussion

The above code stores this array in the .out file thats created, but that’s not enough. You need to run
write_init_pins.sh on the . out file to make the code work. Fortunately the Makefile always runs it.

Listing 5.2: write_init_pins.sh

#!/bin/bash

init_pins=$(readelf -x .init_pins $1 | grep 0x000 | cut -d' ' -f4-7 | xxd -r._
—--p | tr '"\0' '"\n' | paste - -)
while read -a line; do
a5 line[@] } == 2]; then
echo writing \”S${1line[1]}\” to \”${1line[0] }\”
echo line[1] > line[0]
sleep 0.1
fi

done <<< ”S$Sinit_pins”

write_init_pins.sh
The readel f command extracts the path and value from the . out file.

bone$ *readelf -x .init_pins /tmp/prul-gen/shared.out*

Hex dump of section '.init_pins':
0x000000c0 2f737973 2f636¢c61 73732f6¢c 6564732f /sys/class/leds/
0x000000d0 62656167 6c65626f 6e653a67 7265656e beaglebone:green
0x000000e0 3a757372 332f7472 69676765 72006e6f :usr3/trigger.no
0x000000£f0 6e650000 0000 ne....

The rest of the command formats it. Finally line 6 echos the none into the path.

This can be generalized to initialize other things. The point is, the . out file contains everything needed to
run the executable.

5.3 PWM Generator

One of the simplest things a PRU can to is generate a simple signal starting with a single channel PWM that has
a fixed frequency and duty cycle and ending with a multi channel PWM that the ARM can change the frequency
and duty cycle on the fly.

5.3.1 Problem

| want to generate a PWM signal that has a fixed frequency and duty cycle.

5.3. PWM Generator 87

10

11

12

13

14

15

16

17

18

19

20

21

22

PRU Cookbook

5.3.2 Solution

The solution is fairly easy, but be sure to check the Discussion section for details on making it work.

pwml.pru0.c shows the code.

Warning: This code is for the BeagleBone Black. See pwml .prul_1. c for an example that works on
the Al.

Listing 5.3: pwm1.pru0.c

#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”
#include ”prugpio.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t gpio = P9_31; // Select which pin to toggle.;
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
while (1) {
__R30 |= gpio; // Set the GPIO pin to 1
__delay _cycles (100000000) ;
_ R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (100000000) ;
}
}

pwml.prul.c

To run this code you need to configure the pin muxes to output the PRU. If you are on the Black run

bone$ config-pin P9_31 pruout

On the Pocket run

bone$ config-pin P1_36 pruout

Note: See Configuring pins on the Al via device trees for configuring pins on the Al.

Then, tell Make file which PRU you are compiling for and what your target file is

bone$ export TARGET=pwml.prul

Now you are ready to compile

bone$ make
/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—~Black, TARGET=pwml .pru0
= Stopping PRU O
= copying firmware file /tmp/vsx—examples/pwml.pruO.out to /lib/firmware/
—am335x—-prul—fw
write_init_pins.sh
(continues on next page)

88 Chapter 5. Building Blocks - Applications

11

12

13

14

15

16

17

18

19

20

21

22

PRU Cookbook

(continued from previous page)

= Starting PRU O

MODEL = TI_AM335x_BReagleBone_BRlack

PROC = pru

PRUN =0

PRU_DIR = /sys/class/remoteproc/remoteprocl

Now attach an LED (or oscilloscope) to P9_31 on the Black or P1.36 on the Pocket. You should see a
squarewave.

5.3.3 Discussion
Since this is our first example we’ll discuss the many parts in detail.

Listing 5.4: pwm1.pru0.c

#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”
#include ”prugpio.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t gpio = P9_31; // Select which pin to toggle.;
/* Clear SYSCFG[STANDBY INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
while (1) {
_ _R30 |= gpio; // Set the GPIO pin to 1
__delay_cycles (100000000) ;
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (100000000) ;
}
}

pwml.pruO.c

Line-by-line of pwm1.pru0.c is a line-by-line expanation of the c code.

Table 5.2: Line-by-line of pwm1.pru0.c

Line Explanation

1 Standard c-header include

2 Include for the PRU. The compiler knows where to find this since the Makefile says to look for includes in /usr/lib/ti/pru-software-
support-package

3 The file resource_table_empty.h is used by the PRU loader. Generally we’'ll use the same file, and don’t need to modify it.

4 This include has addresses for the GPIO ports and some bit positions for some of the headers.

Here’s what's in resource_table_empty.h

Listing 5.5: resource_table_empty.c

* ======== resource_table_empty.h ========

Define the resource table entries for all PRU cores. This will be
* incorporated into corresponding base images, and used by the remoteproc
(continues on next page)

5.3. PWM Generator 89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

PRU Cookbook

R s

*
N

#ifn
#def

#inc
#inc

(continued from previous page)

on the host-side to allocated/reserve resources. Note the remoteproc
driver requires that all PRU firmware be built with a resource table.

This file contains an empty resource table. It can be used either as:
1) A template, or

2) As-is 1if a PRU application does not need to configure PRU_INTC
or interact with the rpmsg driver

def _RSC_TABLE PRU_H_
ine _RSC_TABLE_PRU_H_

lude <stddef.h>
lude <rsc_types.h>

struct my_resource_table ({

struct resource_table base;

uint32_t offset[1]; /* Should match 'num' in actual definition */

i
#pragma DATA_SECTION (pru_remoteproc_ResourceTable, ”.resource_table”)
#pragma RETAIN (pru_remoteproc_ResourceTable)
struct my_resource_table pru_remoteproc_ResourceTable = {
1, /* we're the first version that implements this */
0, /* number of entries in the table */
0, 0, /* reserved, must be zero */
0, /* offset[0] */
i
#endif /* _RSC_TABLE PRU H_ */

resource_table_empty.c

Table 5.3: Line-by-line (continuted)

Line Explanation
6-7 __R30 and ___R31 are two variables that refer to the PRU output (___R30) and input (__R31) registers. When you write
something to ___R30 it will show up on the corresponding output pins. When you read from ___R31 you read the data on the
input pins. NOTE: Both names begin with two underscore’s. Section 5.7.2 of the PRU Optimizing C/C++ Compiler, v2.2, User’'s
Guide gives more details.
11 This line selects which GPIO pin to toggle. The table below shows which bits in ___R30 map to which pins
14 CT_CFG.SYSCFG_bit.STANDBY_INIT is set to O to enable the OCP master port. More details on this and thousands of other
regesters see the TI AM335x TRM. Section 4 is on the PRU and section 4.5 gives details for all the registers.
Bit 0 is the LSB.
Todo: fill in Blue
920 Chapter 5. Building Blocks - Applications

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

PRU Cookbook

Table 5.4: Mapping bit positions to pin names

PRU Bit Black pin Pocket pin
0 0 P9_31 P1.36
0 1 P9_29 P1.33
0 2 P9_30 P2.32
0 3 P9_28 P2.30
0 4 P9_42b P1.31
0 5 P9_27 P2.34
0 6 P9_41b P2.28
0 7 P9_25 P1.29
0 14 P8_12(out) P8_16(in) P2.24
0 15 P8_11(out) P8_15(in) P2.33
1 0 P8_45

1 1 P8_46

1 2 P8_43

1 3 P8_44

1 4 P8_41

1 5 P8_42

1 6 P8_39

1 7 P8_40

1 8 P8_27 P2.35
1 9 P8_29 P2.01
1 10 P8_28 P1.35
1 11 P8_30 P1.04
1 12 P8_21

1 13 P8_20

1 14 P1.32
1 15 P1.30
1 16 P9_26(in)|

Note: See Configuring pins on the Al via device trees for all the PRU pins on the Al.

Since we are running on PRU 0, and we're using 0x0001, that is bit 0, we’ll be toggling P9_ 31.

Table 5.5: Line-by-line (continued again)

Line Explanation

17 Here is where the action is. This line reads ___R30 and then ORs it with gpi o, setting the bits where thereisa 1 in gpio and
leaving the bits where there is a 0. Thus we are setting the bit we selected. Finally the new value is written back to ___R30.

18 __delay_cycles is an ((intrinsic function)) that delays with number of cycles passed to it. Each cycle is 5ns, and we are
delaying 100,000,000 cycles which is 500,000,000ns, or 0.5 seconds.

19 This is like line 17, but ~gpio inverts all the bits in gpio so that where we had a 1, there is now a 0. This 0 is then ANDed

with __ R30 setting the corresponding bit to 0. Thus we are clearing the bit we selected.

Tip: You can read more about intrinsics in section 5.11 of the (PRU Optimizing C/C++ Compiler, v2.2, User’s
Guide.)

When you run this code and look at the output you will see something like the following figure.

Notice the on time (+Width (1)) is 500ms, just as we predicted. The off time is 498ms, which is only 2ms
off from our prediction. The standard deviation is 0, or only 380as, which is 380 * 10™~-18"1!.

You can see how fast the PRU can run by setting both of the ___delay_cycles to 0. This results in the next
figure.

Notice the period is 15ns which gives us a frequency of about 67MHz. At this high frequency the breadboard
that I'm using distorts the waveform so it's no longer a squarewave. The on time is 5.3ns and the off time
is 9.8ns. That means __R30 |= gpio took only one 5ns cycle and __R30 &= ~gpio also only took one
cycle, but there is also an extra cycle needed for the loop. This means the compiler was able to implement the
while loop in just three 5ns instructions! Not bad.

5.3. PWM Generator 91

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

PRU Cookbook

%% Agilent Technologies SAT JUN 09 01:48:03 2018

0 200v/ 5] g #: 00s 20002/ Auto £ 1.07v

Measure Current Mean i Max Count
Period(1 }: 998ms 998.00ms 998ms . 117
Duty(1): 50.1% 50.100% . 50.1% . 117
+Width(1): 500ms 500.00ms 500ms 117
-Width(1); 498ms 498,00ms 498ms 117

|
Period{1 }: 998ms Duty(1}: 50.1% +Width(1): 500ms -Width(1): 498ms

%) Source ’ Select: y Measure ’ Settings y Clear Meas’ Statistics y
1

-Width -Width ~i i ~i

Fig. 5.2: Output of pwm1l.pru0.c with 100,000,000 delays cycles giving a 1s period

92 Chapter 5. Building Blocks - Applications

PRU Cookbook

%% Agilent Technologies MON JUN 11 07:56:01 2018

0 200v/ 5] g #: 00s 1000y Auto £ 1.07v

Measure Current Mean Min Std Dev

Period(1 }: 15.0ns 15.000ns 14.8ns 59.649ps
Duty(1): 35.3% 35.126% 33.3% 0.51422%
+Width(1): 5.3ns 5.2692ns 5.0ns 82.937ps
-Width(1): 9.8ns 9. 7310rhs 9 .4:ns 82.702ps

Period{1}: 15.0ns Duty(1}: 35.3% +Width(1): 5.3ns -Width(1): 9.8ns

Display On Reset Transparent
] Statistics]

Fig. 5.3: Output of pwm1.pruOc with 0 delay cycles

5.3. PWM Generator 93

10

1

12

13

14

15

16

17

18

19

20

21

22

PRU Cookbook

We want a square wave, so we need to add a delay to correct for the delay of looping back.

Here's the code that does just that.

Listing 5.6: pwm?2.pru0.c

#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”
#include ”prugpio.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)
{
uint32_t gpio = P9_31; // Select which pin to toggle.;

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_ INIT = O;

while (1) {

__R30 |= gpio; // Set the GPIO pin to 1

__delay_cycles(1); // Delay one cycle to correct for.
—loop time

__R30 &= ~gpio; // Clear the GPIO pin

__delay_cycles (0);

pwm2.prul.c
The output now looks like:

It’s not hard to adjust the two ___delay_cycles to get the desired frequency and duty cycle.

5.4 Controlling the PWM Frequency

5.4.1 Problem

You would like to control the frequency and duty cycle of the PWM without recompiling.

5.4.2 Solution

Have the PRU read the on and off times from a shared memory location. Each PRU has is own 8KB of data
memory (DRAM) and 12KB of shared memory (SHAREDMEM) that the ARM processor can also access. See PRU
Block Diagram.

The DRAM 0 address is 0x0000 for PRU 0. The same DRAM appears at address 0x4A300000 as seen from the
ARM processor.

Tip: See page 184 of the AM335x TRM (184).

We take the previous PRU code and add the lines

#define PRUQO_DRAM 0x00000 // Offset to DRAM
volatile unsigned int *pru0O_dram = PRUO_DRAM;

94 Chapter 5. Building Blocks - Applications

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

PRU Cookbook

1% Agilent Technologies SAT JUN 09 02:05:31 2018

0 200v/ 5] g #: 00s 1000y Auto £ 1.07v

Measure Current Mean | Min
Period(1): 20.1ns 19.999ns 19. éns
Duty(1): 50.7% 50.312% 49.0%
+Width(1): 10.2ns 10.062ns 9.8ns
-Width(1 J: 10.0ns 9. 9374riws 9.7|hs

Period{1}: 20.1ns Duty(1}: 50.7% +Width(1): 10.2ns -Width(1). 10.0ns

Display On Reset Transparent
] Statistics]

Fig. 5.4: Output of pwm?2.pru0.c corrected delay

5.4. Controlling the PWM Frequency 95

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

PRU Cookbook

to define a pointer to the DRAM.

Note: The volatile keyword is used here to tell the compiler the value this points to may change, so don’t
make any assumptions while optimizing.

Later in the code we use

prulO_dram[ch] = on[ch]; // Copy to DRAMO so the ARM can change it
prul_dram[ch+MAXCH] = off[ch]l; // Copy after the on array

to write the on and off times to the DRAM. Then inside the while loop we use

onCount [ch] = pruO_dram[2*ch]; // Read from DRAMO
offCount [ch]= prul0_dram[2*ch+1];

to read from the DRAM when resetting the counters. Now, while the PRU is running, the ARM can write values
into the DRAM and change the PWM on and off times. pwm4.pru0.c is the whole code.

Listing 5.7: pwm4.pru0.c

// This code does MAXCH parallel PWM channels.
// It's period is 3 us

#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”

#define PRUO_DRAM 0x00000 // Offset to.
—~DRAM

// Skip the first 0x200 byte of DRAM since the Makefile allocates

// 0x100 for the STACK and 0x100 for the HEAP.

volatile unsigned int *pru0O_dram = (unsigned int *) (PRUO_DRAM + 0x200);

#define MAXCH 4 // Maximum number of channels per PRU

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t ch;
uint32_t on[] = {1, 2, 3, 4}; // Number of cycles to stay on
uint32_t off[] = {4, 3, 2, 1}; // Number to stay off
uint32_t onCount [MAXCH]; // Current count
uint32_t offCount [MAXCH];
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
// Initialize the channel counters.
for (ch=0; ch<MAXCH; ch++) {
prul_dram[2*ch] = on[ch]; // Copy to DRAMO.
—~So0 the ARM can change it
prul0_dram[2*ch+1] = off[ch]; // Interleave the on and.
—off values
onCount [ch] = on[ch];

offCount [ch]= off[ch];

while (1) {
for (ch=0; ch<MAXCH; ch++) {
if (onCount [ch]) {
(continues on next page)

96 Chapter 5. Building Blocks - Applications

39

40

41

42

43

44

45

46

47

48

49

50

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

PRU Cookbook

(continued from previous page)

onCount [ch] ——;
__R30 |= 0xl1<<ch; // Set the.
—GPIO pin to 1
} else if (offCount[ch]) {
offCount [ch]——;

__R30 &= ~(0xl1l<<ch); // Clear the.
—~GPIO pin
} else {
onCount [ch] = prul0_dram[2*ch];
o // Read from DRAMO
offCount [ch]= prul_dram[2*ch+1];
}
t
}
t

pwmé4 .prul.c

Here is code that runs on the ARM side to set the on and off time values.

Listing 5.8: pwm-test.c

pwm tester

The on cycle and off cycles are stored in each PRU's Data memory
*

=/
#include <stdio.h>
#include <fcntl.h>

#include <sys/mman.h>

#define MAXCH 4

#define PRU_ADDR 0x4A300000 // Start of PRU.
—memory Page 184 am335x TRM

#define PRU_LEN 0x80000 /s
—Length of PRU memory

#define PRUO_DRAM 0x00000 // Offset to.
—DRAM

#define PRUIl_DRAM 0x02000

#define PRU_SHAREDMEM 0x10000 // Offset to.

—shared memory

unsigned int *pru0ODRAM_32int_ptr; // Points to the.
—start of local DRAM

unsigned int *prulDRAM_32int_ptr; // Points to the.
—wstart of local DRAM

unsigned int *prusharedMem_32int_ptr; // Points to the start of.

—the shared memory

/

Ly K E R Rk ok ok ok Sk ok Sk b Sk ok o ok b ok ok ok Sk ok ok b Sk o ok o ok o ok S ok Sk ok Sk b ok b ok o ok o ok b ok Sk ok ok b ok o ok o ok o ok ok ok ok ok ok ok ok b ok ok ok ok ok o

* int start_pwm _count (int ch, int countOn, int countOff)

*

* Starts a pwm pulse on for countOn and off for countOff to a single channel.
— (Ch)

***/

int start_pwm_count (int ch, int countOn, int countOff) {
unsigned int *pruDRAM_32int_ptr = pruODRAM_32int_ptr;
(continues on next page)

5.4. Controlling the PWM Frequency 97

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

PRU Cookbook

(continued from previous page)

printf (”"countOn: %d, countOff: %d, count: %d\n”,
countOn, countOff, countOn+countOff);
// write to PRU shared memory

PruDRAM_32int_ptr[2* (ch)+0] = countOn; // On time
PrubDRAM_32int_ptr[2* (ch)+1] = countOff; // Off time
return O;
}
int main (int argc, char *argv[])
{
unsigned int *pru; // Points to start of PRU.
—memory.
int fd;
printf (”Servo tester\n”);
fd = open (”/dev/mem”, O_RDWR | O_SYNC);
if (fd == -1) {
printf (”ERROR: could not open /dev/mem.\n\n”);
return 1;
}
pru = mmap (0, PRU_LEN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, PRU_
—ADDR) ;
if (pru == MAP_FAILED) {
printf (”ERROR: could not map memory.\n\n”);
return 1;
}
close (fd);
printf (”Using /dev/mem.\n”);
pruODRAM_32int_ptr = pru + PRUO_DRAM/4 + 0x200/4; A s
—~Points to 0x200 of PRUO memory
prulDRAM_32int_ptr = pru + PRU1_DRAM/4 + 0x200/4; /e

—~Points to 0x200 of PRUIl memory
prusharedMem_32int_ptr = pru + PRU_SHAREDMEM/4;
—~start of shared memory

int i;

for (i=0; i<MAXCH; i++) {
start_pwm_count (i, i+1, 20-(i+1));

}

if (munmap (pru, PRU_LEN)) {
printf ("munmap failed\n”);
} else {
printf ("munmap succeeded\n”);

}

pwm—-test.c

A quick check on the ‘scope shows Four Channel PWM with ARM control.

// Points to.

From the ‘scope you see a 1 cycle on time results in a 450ns wide pulse and a 3.06us period is 326KHz, much
slower than the 10ns pulse we saw before. But it may be more than fast enough for many applications. For

example, most servos run at 50Hz.

But we can do better.

5.5 Loop Unrolling for Better Performance

98 Chapter 5. Building Blocks - Applications

PRU Cookbook

Agilent Technologies THU JUN 14 15:47:11 2018

0 200v/ B 500v/ @ 500v/ @ 500v/ =+ 00s 1000% Auto £ 1.07v

I'.I l'#.\flu'“q\.,u_

‘ﬁl.l,'llmu_",ﬁm_ 'I“W,J

Measure i Max Count

Period(1 }: . 3.0600us . 3.06us 2.453k
Duty(7): . 14.700% . 14.7% 2.453k
+Widthi1); 450,00ns 450ns 2.453k
-Width(1); 2.61lus 2.6100us 2.6|&us 2.61lus 2.453k

|
Period{1 }: 3.06us Duty(1): 14.7% +Width(1): 450ns -Width(1). 2.6Tus

Display On Reset Transparent
] Statistics]

Fig. 5.5: Four Channel PWM with ARM control

5.5. Loop Unrolling for Better Performance 929

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

PRU Cookbook

5.5.1 Problem

The ARM controlled PRU code runs too slowly.

5.5.2 Solution

Simple loop unrolling can greatly improve the speed. pwm5 .pruQ. c is our unrolled version.

Listing 5.9: pwm5.pru0.c Unrolled

// This code does MAXCH parallel PWM channels.

// It's period is 510ns.

#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”
#define PRUO_DRAM 0x00000
—~DRAM

// Offset to.

// Skip the first 0x200 byte of DRAM since the Makefile allocates
// 0x100 for the STACK and 0x100 for the HEAP.

volatile unsigned int *pru0_dram =
#define MAXCH 4

#define update (ch) \
if (onCount[ch]) {

(unsigned int *)

(PRUO_DRAM + 0x200) ;

// Maximum number of channels per PRU

onCount [ch]——; \

__R30

|= 0x1<<ch; \

} else if(offCount[ch]) { \
offCount [ch]—-; \

__R30
} else {
onCount [ch]

&= ~(0xl<<ch); \

= pruO_dram[2*ch]; \

offCount [ch]= prul_dram[2*ch+1]; \

}

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

// Copy to DRAMO.

// Interleave the on and.

{
uint32_t ch;
uint32_t on/[] = {1, 2, 3, 4%};
uint32_t off[] = {4, 3, 2, 1};
uint32_t onCount [MAXCH], offCount [MAXCH];
/* Clear SYSCFG[STANDBY INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
#pragma UNROLL (MAXCH)
for (ch=0; ch<MAXCH; ch++) {
prulO_dram[2*ch] = on[ch];
—~Sso the ARM can change it
prul0_dram[2*ch+1] = off[ch];
—~off values
onCount [ch] = on[ch];

offCount [ch]= off[ch];
}

while

(1) A
update (0)

(continues on next page)

100

Chapter 5. Building Blocks - Applications

49

50

51

52

53

PRU Cookbook

(continued from previous page)
update (1)
update (2)
update (3)
t

pwm5.prul.c

The output of pwm5.pru0. c is in the figure below.

Agilent Technologies FRI JUN 15 09:10:19 2018
1] 2.00V/ B 500v/ g 500v/ @ 500/ :: 00s 1000 Auto f 1.07V

Geanaseacasaanas

|
|
TR I R " ' R T "R ' T "I RN 'R IR

| |
DY Y Y N Y N Y A YA Y Y Y I Y YA A A
1 |

Measure Current Mean r:\ﬂin Max Std Dev Count

Period(1): 510ns 511.34ns ,,.51@ns 5208ns 3.4059ns | 3.958k
Duty(1): 13.7% 13.924% 11.8% 15.4% 0.58300% '3.958k
+Width(1): 70ns 71.321ns 60ns 80ns 3.4239ns |3.958k
-Width(1): 440ns 440.02ns 4:140|hs 450ns 420.28ps 3.957k

|
Period(1): 510ns Duty(1): 13.7% +Width(1): 70ns -Width(1): 440ns

Display On Reset Transparent
] Statistics]

Fig. 5.6: pwm5.pru0.c Unrolled version of pwm4.pru0.c

It's running about 6 times faster than pwm4 . pru0.c.

Table 5.6: pwm4.pru0.c vs. pwm5.pru0.c

Measure pwm4.pru0.c time pwm5.pru0.c time Speedup pwm5.pru0.c w/o UNROLL Speedup
Period 3.06μs 510ns 6x 1.81μs ~1.7x
Width+ 450ns 70ns ~6x 1.56μs ~.3x

Not a bad speed up for just a couple of simple changes.

5.5. Loop Unrolling for Better Performance 101

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

PRU Cookbook

5.5.3 Discussion

Here’s how it works. First look at line 39. You see #pragma UNROLL (MAXCH) which is a pragma that
tells the compiler to unroll the loop that follows. We are unrolling it MAXCH times (four times in this example).
Just removing the pragma causes the speedup compared to the pwm4 .pru0 . c case to drop from 6x to
only 1.7x.

We also have our for loop inside the while loop that can be unrolled. Unfortunately UNROLL () doesn’t
work on it, therefore we have to do it by hand. We could take the loop and just copy it three times, but that
would make it harder to maintain the code. Instead | converted the loop into a #define (lines 14-24) and
invoked update () as needed (lines 48-51). This is not a function call. Whenever the preprocessor sees the
update () it copies the code an then it’s compiled.

This unrolling gets us an impressive 6x speedup.

5.6 Making All the Pulses Start at the Same Time

5.6.1 Problem

I have a mutlichannel PWM working, but the pulses aren’t synchronized, that is they don’t all start at the same
time.

5.6.2 Solution

pwmb5.pru0 Zoomed In is a zoomed in version of the previous figure. Notice the pulse in each channel starts
about 15ns later than the channel above it.

The solution is to declare Rtmp (line 35) which holds the value for __R30.

Listing 5.10: pwm®6.pru0.c Sync’ed Version of pwm5.pru0.c

// This code does MAXCH parallel PWM channels.

// All channels start at the same time. It's period is 510ns
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#define PRUO_DRAM 0x00000 // Offset to.
—~DRAM

// Skip the first 0x200 byte of DRAM since the Makefile allocates

// 0x100 for the STACK and 0x100 for the HEAP.

volatile unsigned int *pru0O_dram = (unsigned int *) (PRUO_DRAM + 0x200);

#define MAXCH 4 // Maximum number of channels per PRU

#define update (ch) \

if (onCount [ch]) { \
onCount [ch]--; \
Rtmp |= 0Oxl<<ch; \

} else if(offCount[ch]) { \
offCount [ch]—-; \
Rtmp &= ~(0x1<<ch); \

} else { \
onCount [ch] = prulO_dram[2*ch]; \
offCount [ch]= prul_dram[2*ch+1]; \

}

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;
(continues on next page)

102 Chapter 5. Building Blocks - Applications

PRU Cookbook

Agilent Technologies FRI JUN 15 095105 2018

0 200v/ B 500v/ @ 500v/ @ 500v/ 3¢ 00s 1000 Auto £ 1.07v

Measurement Menu

<> Source Select: Measure Settings Statistics
4 -Width -Width ~i ~i

Fig. 5.7: pwm5.pru0 Zoomed In

5.6. Making All the Pulses Start at the Same Time 103

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

44

a5

46

47

48

49

50

51

52

53

54

55

56

PRU Cookbook

void main (void)

{
uint32_t ch;
uint32_t on[] = {1, 2, 3, 4};
uint32_t off[] {4, 3, 2, 1};

uint32_t onCount [MAXCH], offCount [MAXCH];

register uint32_t Rtmp;

(continued from previous page)

/* Clear SYSCFG[STANDBY INIT] to enable OCP master port */

CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

#pragma UNROLL (MAXCH)
for (ch=0; ch<MAXCH; ch++) {
prul0_dram[2*ch]
—~S0 the ARM can change it

on[chl];

prulO_dram[2*ch+1] = off[ch];

—~off values

onCount [ch] = on[ch];
offCount [ch]= off[ch];
}
Rtmp = __R30;

while (1) {
update (0)
update (1)
update (2)
update (3)

__R30 = Rtmp;

pwm6.prul.c Sync'ed Version of pwmb.pruO.c

// Copy to DRAMO.

// Interleave the on and.

Each channel writes it's value to Rtmp (lines 17 and 20) and then after each channel has updated, Rtmp is

copied to __ R30 (line 54).

5.6.3 Discussion

The following figure shows the channel are sync’ed. Though the period is slightly longer than before.

5.7 Adding More Channels via PRU 1

5.7.1 Problem

You need more output channels, or you need to shorten the period.

5.7.2 Solution

PRU 0 can output up to eight output pins (see Mapping bit positions to pin names). The code presented so far

can be easily extended to use the eight output pins.

But what if you need more channels? You can always use PRUL, it has 14 output pins.

Or, what if four channels is enough, but you need a shorter period. Everytime you add a channel, the overall
period gets longer. Twice as many channels means twice as long a period. If you move half the channels to

PRU 1, you will make the period half as long.

104

Chapter 5. Building Blocks - Applications

PRU Cookbook

Agilent Technologies FRI JUN 15 10:02:09 2018
1) 2.00V/ B 500v/ @ 500v/ @ 500v/ i 00s 10002/ Auto £ 1.07V

Measure Current Mean i Max Std Dev Count

Period(1 }: 560ns 560.08ns 561ns 371.10ps ..103.3k
Duty(1): 14, 3% 14.291% . 14, 3% 0.04224% 103.3k
+Width(1): 80ns 79.953ns 80ns 212.31ps |163.3k
-Width(1): 480ns 480.12ns 481ns 328.65ps 103.3k

|
Period{1 }: 560ns Duty(1}: 14.3% +Width(1): 80ns -Width(1): 480ns

Display On Reset Transparent
] Statistics]

Fig. 5.8: pwm6.pru0 Synchronized Channels

5.7. Adding More Channels via PRU 1 105

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

51

52

53

54

55

PRU Cookbook

Here's the code (pwm7 .pru0.c)

Listing 5.11: pwm7.pru0.c Using Both PRUs

// This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1

// All channels start at the same time. But the PRU 1 ch have a difference.
—period

// It's period is 370ns

#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”

#define PRUNUM O

#define PRUO_DRAM 0x00000 // Offset to.
—~DRAM

// Skip the first 0x200 byte of DRAM since the Makefile allocates

// 0x100 for the STACK and 0x100 for the HEAP.

volatile unsigned int *pru0O_dram = (unsigned int *) (PRUO_DRAM + 0x200);
#define MAXCH 2 // Maximum number of channels per PRU

#define update (ch) \

if (onCount[ch]) { \
onCount [ch]—-; \
Rtmp [= 0Oxl1<<ch; \

} else if(offCount/[ch]) { \
offCount [ch]—--; \
Rtmp &= ~(0x1<<ch); \

} else { \
onCount [ch] = prulO_dram[2*ch]; \
offCount [ch]= pru0_dram[2*ch+1]; \

}

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t ch;
uint32_t on[] = {1, 2, 3, 4};
uint32_t off[] = {4, 3, 2, 1};

uint32_t onCount [MAXCH], offCount [MAXCH];
register uint32_t Rtmp;

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

#pragma UNROLL (MAXCH)
for (ch=0; ch<MAXCH; ch++) {

pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to.
—~DRAMO so the ARM can change it

prul_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; / /e
—~Interleave the on and off values

onCount [ch] = on [ch+PRUNUM*MAXCH];

offCount [ch]= off[ch+PRUNUM*MAXCH] ;

Rtmp = __R30;

(continues on next page)

106 Chapter 5. Building Blocks - Applications

56

57

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PRU Cookbook

(continued from previous page)

pwm7.prul.c Using Both PRUs

Be sure to run pwm7_setup. sh to get the correct pins configured.

Listing 5.12: pwm?7_setup.sh

#!/bin/bash

#

export TARGET=pwm7.prul
echo TARGET=STARGET

Configure the PRU pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n Smachine

if [$machine = "Black”]; then
echo ” Found”
pins="P9_31 P9_29 P8_45 P8_46"
elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""
elif [Smachine = "PocketBeagle”]; then
echo ” Found”
pins="P1_36 P1_33"
else
echo ” Not Found”
pins=""
fi

for pin in Spins

do
echo Spin
config-pin $pin pruout
config-pin —-gq S$pin
done

pw7_setup.sh
This makes sure the PRU 1 pins are properly configured.

Here we have a second pwm7 file. pwm7 .prul. cisidentical to pwm7.pru0 . c except PRUNUM is set to
1, instead of 0.

Compile and run the two files with:

bone$ *make TARGET=pwm7.prul; make TARGET=pwm7.prul*
/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—~Black, TARGET=pwm7.pru0

= Stopping PRU O

= copying firmware file /tmp/vsx—examples/pwm7.prul.out to /lib/firmware/
—am335x-prul-—fw

write_init_pins.sh

- Starting PRU 0

MODEL = TI_AM335x_BeagleBone_Black

PROC = pru

PRUN =0

PRU _DIR = /sys/class/remoteproc/remoteprocl

/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_

—Black, TARGET=pwm7.prul

= Stopping PRU 1

= copying firmware file /tmp/vsx—examples/pwm7.prul.out to /lib/firmware/
(continues on next page)

5.7. Adding More Channels via PRU 1 107

PRU Cookbook

(continued from previous page)
—am335x-prul-fw
write_init_pins.sh
- Starting PRU 1

MODEL = TI_AM335x_BeagleBone_Black

PROC = pru

PRUN =1

PRU_DIR = /sys/class/remoteproc/remoteproc2

This will first stop, compile and start PRU 0, then do the same for PRU 1.

Moving half of the channels to PRU1 dropped the period from 510ns to 370ns, so we gained a bit.

5.7.3 Discussion

There weren’t many changes to be made. Line 15 we set MAXCH to 2. Lines 44-48 is where the big change is.

prul0_dram[2*ch] = on [ch+PRUNUN*MAXCH]; // Copy to DRAMO so the ARM.
—~can change it

prul0_dram[2*ch+1] = off[ch+PRUNUN*MAXCH]; // Interleave the on and off.
—~values

onCount [ch] = on [ch+PRUNUN*MAXCH];
offCount [ch]= off[ch+PRUNUN*MAXCH] ;

If we are compiling for PRU 0, on [ch+PRUNUN*MAXCH] becomes on [ch+0*2] whichis on [ch] which
is what we had before. But now if we are on PRU 1 it becomes on [ch+1*2] which is on[ch+2]. That
means we are picking up the second half of the on and of f arrays. The first half goes to PRU 0, the second
to PRU 1. So the same code can be used for both PRUs, but we get slightly different behavior.

Running the code you will see the next figure.

What's going on there, the first channels look fine, but the PRU 1 channels are blurred. To see what'’s happening,
let’s stop the oscilloscope.

The stopped display shows that the four channels are doing what we wanted, except The PRU 0 channels have
a period of 370ns while the PRU 1 channels at 330ns. It appears the compiler has optimied the two PRUs
slightly differently.

5.8 Synchronizing Two PRUs

5.8.1 Problem

I need to synchronize the two PRUs so they run together.

5.8.2 Solution

Use the Interrupt Controller (INTC). It allows one PRU to signal the other. Page 225 of the AM335x TRM 225
has details of how it works. Here’s the code for PRU 0, which at the end of the while loop signals PRU 1 to
start(pwm8 .pru0. c).

Listing 5.13: pwm8.pru0.c PRU 0 using INTC to send a signal to PRU 1

// This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
// All channels start at the same time.
// It's period is 430ns
#include <stdint.h>
#include <pru_cfg.h>
#include <pru_intc.h>
(continues on next page)

108 Chapter 5. Building Blocks - Applications

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

PRU Cookbook

Agilent Technologies FRI JUN 15 12:30:14 2018

0 500v/ B 500v/ @ 500v/ @ 500v/ =+ 00s 1000/ Auto £ 1.07v

Period{1 }: 370ns +Width(1): 49ns Period{® }: 331ns +Width(® }: 128ns

Trigger ’@Source y Slope ’
1

Edge f

Fig. 5.9: pwm7.pru0 Two PRUs running

5.8. Synchronizing Two PRUs 109

PRU Cookbook

Agilent Technologies FRI JUN 15 13:05:11 2018

0 500v/ B 500v/ @ 500v/ @ 500v/ =+ 00s 1000 Stop £ 1.07v

\'\“v’"‘\“ﬁ
| | ‘
|

|
L,\,v'\m,,#ww, T e ‘|'Ir._,I"-.m*\r'wmmmu.-.ﬁﬁmmnﬂwﬁm

Period{1 }: 370ns +Width(1): 49ns Period{” }: 329ns +Width(® }: 127ns
Trigger %) Source Slope
Edge 1 f

Fig. 5.10: pwm7.pru0 Two PRUs stopped

110 Chapter 5. Building Blocks - Applications

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57

58

PRU Cookbook

(continued from previous page)

#include <pru_ctrl.h>
#include ”"resource_table_empty.h”

#define PRUNUM O

#define PRUO_DRAM 0x00000 // Offset to.
—DRAM

// Skip the first 0x200 byte of DRAM since the Makefile allocates

// 0x100 for the STACK and 0x100 for the HEAP.

volatile unsigned int *pru0O_dram = (unsigned int *) (PRUO_DRAM + 0x200);
#define MAXCH 2 // Maximum number of channels per PRU

#define update (ch) \

if (onCount[ch]) { \
onCount [ch]—-; \
Rtmp |= 0Ox1<<ch; \

} else if(offCount[ch]) { \
offCount [ch]—-; \
Rtmp &= ~ (0x1<<ch); \

} else { \
onCount [ch] = pruO_dram[2*ch]; \
offCount [ch]= pruO_dram[2*ch+1]; \

}

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

// Initialize interrupts so the PRUs can be syncronized.
// PRUl is started first and then waits for PRUO

// PRUO is then started and tells PRUIl when to start going
void configIntc (void) {

__R31 = 0x00000000; // Clear.
—any pending PRU-generated events

CT_INTC.CMR4_bit.CH_MAP_16 = 1; // Map event 16 to.
—channel 1

CT_INTC.HMRO_bit .HINT_MAP_1 = 1; // Map channel 1 to host 1

CT_INTC.SICR = 16; // Ensure.
—event 16 is cleared

CT_INTC.EISR = 16; // Enable_
—event 16

CT_INTC.HIEISR |= (1 << 0); // Enable Host.
—~lIinterrupt 1

CT_INTC.GER = 1; // Globally.

—enable host interrupts

}

void main (void)

{

uint32_t ch;

uint32_t on[] = {1, 2, 3, 4};

uint32_t off[] = {4, 3, 2, 1};

uint32_t onCount [MAXCH], offCount [MAXCH];

register uint32_t Rtmp;

CT_CFG.GPCFGO = 0x0000; // Configure._
—~GPI and GPO as Mode 0 (Direct Connect)

configIntc(); A Vs

—~Configure INTC

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */

(continues on next page)

5.8. Synchronizing Two PRUs 111

PRU Cookbook

(continued from previous page)
59 CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

60

e1 #pragma UNROLL (MAXCH)

62 for (ch=0; ch<MAXCH; ch++) {

63 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to.
—~DRAMO so the ARM can change it

64 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; / /o
—~Interleave the on and off values

65 onCount [ch] = on [ch+PRUNUM*MAXCH];

66 offCount [ch]= off[ch+PRUNUM*MAXCH] ;

67 }

68 Rtmp = __ _R30;

69

70 while (1) {

7 __R30 = Rtmp;

72 update (0)

73 update (1)

74 #define PRUO_PRUI_EVT 16

75 _ R31 = (PRUO_PRU1_EVT-16) | (0x1<<5); //Tell PRU 1.
—~to start

76 __delay_cycles(1l);

77 }
78 }

pwm8.prul.c PRU 0 using INTC to send a signal to PRU 1

PRU 2’s code waits for PRU 0 before going.

Listing 5.14: pwm8.prul.c PRU 1 waiting for INTC from PRU 0

1 | // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
> // All channels start at the same time.

s | // It's period is 430ns

« #include <stdint.h>

s #include <pru_cfg.h>

¢ #include <pru_intc.h>

7 | #include <pru_ctrl.h>

s #include ”resource_table empty.h”

10 #define PRUNUM 1

11

12 | #define PRUO_DRAM 0x00000 // Offset to.
—~DRAM

13 | // Skip the first 0x200 byte of DRAM since the Makefile allocates

w // 0x100 for the STACK and 0x100 for the HEAP.

15 volatile unsigned int *pru0_dram = (unsigned int *) (PRUO_DRAM + 0x200);

16

v #define MAXCH 2 // Maximum number of channels per PRU

18

1w #define update (ch) \

20 if (onCount[ch]) { \

21 onCount [ch]—-; \

2 Rtmp |= 0Ox1<<ch; \

23 } else if (offCount([ch]) { \

2 offCount [ch]——; \
25 Rtmp &= ~(0x1<<ch); \

26 } else { \
27 onCount [ch] = pruO_dram[2%*ch]; \

28 offCount [ch]= prul_dram[2*ch+1]; \
29 }

30
1 volatile register uint32_t _ R30;
(continues on next page)

112 Chapter 5. Building Blocks - Applications

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

PRU Cookbook

(continued from previous page)

volatile register uint32_t _ R31;

// Initialize interrupts so the PRUs can be syncronized.
// PRUl is started first and then waits for PRUQO

// PRUO is then started and tells PRUI when to start going

void main (void)

{
uint32_t ch;
uint32_t on[] = {1, 2, 3, 4};
uint32_t off[] = {4, 3, 2, 1};

uint32_t onCount [MAXCH], offCount [MAXCH];
register uint32_t Rtmp;

/* Clear SYSCFG[STANDBY INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_ INIT = O0;

#pragma UNROLL (MAXCH)
for (ch=0; ch<MAXCH; ch++) {

pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to.
—DRAMO so the ARM can change it
prul0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; A fes
—Interleave the on and off values
onCount [ch] = on [ch+PRUNUM*MAXCH];
offCount [ch]= off[ch+PRUNUM*MAXCH] ;
}
Rtmp = __ _R30;

while (1) {

while((__R31 & (0x1<<31))==0) { // Wait for.
—~PRU 0

}

CT_INTC.SICR = 16; /e
—~Clear event 16

__R30 = Rtmp;

update (0)

update (1)

pwm8.prul.c PRU 1 waiting for INTC from PRU 0

In pwm8 . prul.c PRU 1 waits for a signal from PRU 0, so be sure to start PRU 1 first.

bone$ *make TARGET=pwm8.prul; make TARGET=pwm8.prul*

5.8.3 Discussion

The figure below shows the two PRUs are synchronized, though there is some extra overhead in the process so
the period is longer.

This isn’t much different from the previous examples.

5.8. Synchronizing Two PRUs 113

PRU Cookbook

Agilent Technologies FRI JUN 15 15:34:15 2018

0 500v/ B 500v/ @ 500v/ @ 500v/ =+ 00s 1000/ Auto £ 1.07v

Period{1 }: 429ns +Width(1): 54ns Period{” }: 430ns +Width(® }: 174ns

Trigger ’@Source y Slope ’
1

Edge f

Fig. 5.11: pwm8.pru0 PRUs synced

114 Chapter 5. Building Blocks - Applications

10

11

12

13

14

15

16

17

18

19

20

21

22

PRU Cookbook

Table 5.7: pwm8.pru0.c changes from pwm?7.pru0.c

PRU Line Change

0 37- For PRU 0 these define configInitc () which initializes the interrupts. See page 226 of the AM335x TRM for a
45 diagram explaining events, channels, hosts, etc.

0 55- Set a configuration register and call configlnitc.
56

1 59- PRU 1 then waits for PRU 0 to signal it. Bit 31 of ___R31 corresponds to the Host-1 channel which configInitc ()
61 set up. We also clear event 16 so PRU 0 can set it again.

0 74- On PRU 0 this generates the interrupt to send to PRU 1. | found PRU 1 was slow to respond to the interrupt, so | put
75 this code at the end of the loop to give time for the signal to get to PRU 1.

This ends the multipart pwm example.

5.9 Reading an Input at Regular Intervals

5.9.1 Problem

You have an input pin that needs to be read at regular intervals.

5.9.2 Solution
You can use the ___R31 register to read an input pin. Let’s use the following pins.

Table 5.8: Input/Output pins

Direction Bit number Black Al (ICSS2) Pocket

out 0 P9 31 P8 44 P1.36
in 7 P9 25 P8_36 P1.29

These values came from Mapping bit positions to pin names.

Configure the pins with input_setup. sh.

Listing 5.15: input_setup.sh

#!/bin/bash

#

export TARGET=input.prul
echo TARGET=STARGET

Configure the PRU pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n Smachine
if [$machine = "Black”]; then
echo ” Found”
config-pin P9_31 pruout
config-pin —-g P9_31
config-pin P9_25 pruin
config-pin —-g P9_25

elif [Smachine = ”"Blue”]; then
echo ” Found”
pinS:""

elif [Smachine = "PocketBeagle”]; then
echo ” Found”

config-pin P1_36 pruout
config-pin —-g P1_36
config-pin P1_29 pruin
(continues on next page)

5.9. Reading an Input at Regular Intervals 115

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

23

24

25

26

27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

PRU Cookbook

(continued from previous page)
config-pin -q P1_29
else
echo ” Not Found”
P ins=""
fi

input_setup.sh

The following code reads the input pin and writes its value to the output pin.

Listing 5.16: input.pru0.c

#include <stdint.h>
#include <pru_cfg.h>
#include ”resource_table_empty.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t led;
uint32_t sw;
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O0;
led = 0x1<<0; // P9 31 or P1l_36
sw = 0x1<<7; // P9 25 or P1_29
while (1) {
if ((__R31&sw) == sw) {
__R30 |= led; // Turn on LED
} else
__R30 &= ~led; // Turn off LED
}
t

input.prul.c

5.9.3 Discussion

Just remember that ___R30 is for outputs and ___R31 is for inputs.

5.10 Analog Wave Generator

5.10.1 Problem

| want to generate an analog output, but only have GPIO pins.

5.10.2 Solution

The Beagle doesn’t have a built-in analog to digital converter. You could get a USB Audio Dongle which are
under $10. But here we’ll take another approach.

116 Chapter 5. Building Blocks - Applications

https://www.amazon.com/external-Adapter-Windows-Microphone-SD-CM-UAUD/dp/B001MSS6CS/0&keywords=audio+dongle

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

PRU Cookbook

Earlier we generated a PWM signal. Here we’ll generate a PWM whose duty cycle changes with time. A small
duty cycle for when the output signal is small and a large duty cycle for when it is large.

This example was inspired by A PRU Sin Wave Generator in chapter 13 of Exploring BeagleBone by Derek
Molloy.

Here’s the code.

Listing 5.17: sine.pru0.c

// Generate an analog waveform and use a filter to reconstruct it.
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include <math.h>

#define MAXT 100 // Maximum number of time samples
#define SAWTOOTH // Pick which waveform

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t onCount; // Current count for 1 out
uint32_t offCount; // count for 0 out
uint32_t i;
uint32_t waveform[MAXT]; // Waveform to be produced

// Generate a periodic wave in an array of MAXT values
#ifdef SAWTOOTH
for (i=0; i<MAXT; i++) {
waveform[i] = i*100/MAXT;

#endif
#1fdef TRIANGLE
for (i=0; 1<MAXT/2; i++) {
waveform[1i] 2*i*100/MAXT;
waveform[MAXT-i-1] = 2*1i*100/MAXT;

#endif
#ifdef SINE
float gain = 50.0f;
float bias = 50.0f;
float freq = 2.0f * 3.14159f / MAXT;
for (1=0; 1<MAXT; 1i++){

waveform[i] = (uint32_t) (biastgain*sin(i*freq));
}
#endif
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
while (1) A
// Generate a PWM signal whose duty cycle matches
// the amplitude of the signal.
for (i=0; i<MAXT; i++) A
onCount = waveform[i];
offCount = 100 - onCount;
while (onCount——) {
__R30 |= 0x1; // Set the GPIO.
—pin to 1
}

(continues on next page)

5.10. Analog Wave Generator 117

https://github.com/derekmolloy/exploringBB/tree/master/chp13/sineWave
http://exploringbeaglebone.com/
http://exploringbeaglebone.com/

53

54

55

56

57

58

PRU Cookbook

(continued from previous page)

while (offCount—-) {
__R30 &= ~(0x1); // Clear the GPIO pin

}

sine.prul.c

Set the #define atline 7 to the number of samples in one cycle of the waveform and set the #define at
line 8 to which waveform and then run make.

5.10.3 Discussion

The code has two parts. The first part (lines 21 to 39) generate the waveform to be output. The #define” " s
let you select which waveform you want to generate. Since the output
is a percent duty cycle, the wvalues in "~ “waveform[] must be between 0 and 100
inclusive. The waveform is only generated once, so this part of the code isn’t time critical.

The second part (lines 44 to 54) uses the generated data to set the duty cycle of the PWM on a cycle-by-cycle
basis. This part is time critical; the faster we can output the values, the higher the frequency of the output
signal.

Suppose you want to generate a sawtooth waveform like the one shown in Continuous Sawtooth Waveform.

Sawtooth Waveform
100 . . - . .

80 | / - / ya

60 y

0 0.05 01 0.15 02 0.25 0.3 0.35 0.4

Fig. 5.12: Continuous Sawtooth Waveform

You need to sample the waveform and store one cycle. Sampled Sawtooth Waveform shows a sampled version
of the sawtooth. You need to generate MAXT samples; here we show 20 samples, which may be enough. In
the code MAXT is set to 100.

There’s a lot going on here; let's take it line by line.

118 Chapter 5. Building Blocks - Applications

PRU Cookbook

Sampled Sawtooth Waveform

100 T T

60 ® -

1 002 003 004 005 006 007 008 009 04

Fig. 5.13: Sampled Sawtooth Waveform

Table 5.9: Line-by-line of sine.pru0.c

Line Explanation

2-5 Standard c-header includes

7 Number for samples in one cycle of the analog waveform

8 Which waveform to use. We’'ve defined SAWTOOTH, TRIANGLE and SINE, but you can define your own too.

10- Declaring registers pass: [__R30] andpass: [__R31].

11

15- onCount counts how many cycles the PWM should be 1 and of fCount counts how many it should be off.

16

18 waveform|[] stores the analog waveform being output.

21- SAWTOOTH is the simplest of the waveforms. Each sample is the duty cycle at that time and must therefore be between 0

24 and 100.

26- TRIANGLE is also a simple waveform.

31

32- SINE generates a sine wave and also introduces floating point. Yes, you can use floating point, but the PRUs don’t have

39 floating point hardware, rather, it’s all done in software. This mean using floating point will make your code much bigger and
slower. Slower doesn’t matter in this part, and bigger isn’t bigger than our instruction memory, so we're OK.

47 Here the for loop looks up each value of the generated waveform.

48,49 onCount is the number of cycles to be at 1 and of fCount is the number of cycles to be 0. The two add to 100, one full
cycle.

50- Stay on for onCount cycles.

52

53- Now turn off for of fCount cycles, then loop back and look up the next cycle count.

55

Unfiltered Sawtooth Waveform shows the output of the code.

It doesn’t look like a sawtooth; but if you look at the left side you will see each cycle has a longer and longer
on time. The duty cycle is increasing. Once it’s almost 100% duty cycle, it switches to a very small duty cycle.
Therefore it's output what we programmed, but what we want is the average of the signal. The left hand side
has a large (and increasing) average which would be for top of the sawtooth. The right hand side has a small
average, which is what you want for the start of the sawtooth.

A simple low-pass filter, built with one resistor and one capacitor will do it. Low-Pass Filter Wiring Diagram
shows how to wire it up.

Note: | used a 10K variable resistor and a 0.022uF capacitor. Probe the circuit between the resistor and the
capacitor and adjust the resistor until you get a good looking waveform.

Reconstructed Sawtooth Waveform shows the results for filtered the SAWTOOTH.

Now that looks more like a sawtooth wave. The top plot is the time-domain plot of the output of the low-pass

5.10. Analog Wave Generator 119

PRU Cookbook

Agilent Technologies FRI JUN 29 1255229 2018
' g 200v/ § a F 00s 5000 Auto f 2 83V

Period(1):No signal
+Width{1):No signal
Freq(1):No signal

Waveform Math Menu f(t) = FFT(ChT) J
<) Function Operator Source 1 More FFT
fit) FFT i Preset -

Fig. 5.14: Unfiltered Sawtooth Waveform

120 Chapter 5. Building Blocks - Applications

PRU Cookbook

1 | ssssa i
O-OZZIJF e e @ @ o e e o o
. -‘:— . E: e e BeagleBone
R1 L L A e e o o
10kQ L) L I e e o 0

fritzing

Fig. 5.15: Low-Pass Filter Wiring Diagram

filter. The bottom plot is the FFT of the top plot, therefore it's the frequency domain. We are getting a sawtooth
with a frequency of about 6.1KHz. You can see the fundamental frequency on the bottom plot along with several
harmonics.

The top looks like a sawtooth wave, but there is a high freqnecy superimposed on it. We are only using a
simple first-order filter. You could lower the cutoff freqnecy by adjusting the resistor. You'll see something like
Reconstructed Sawtooth Waveform with Lower Cutoff Frequency.

The high frequencies have been reduced, but the corner of the waveform has been rounded. You can also adjust
the cutoff to a higher frequency and you’ll get a sharper corner, but you'll also get more high frequencies. See
Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

Adjust to taste, though the real solution is to build a higher order filter. Search for _second order filter and
you'll find some nice circuits.

You can adjust the frequency of the signal by adjusting MAXT. A smaller MAXT will give a higher frequency.
I've gotten good results with MAXT as small as 20.

You can also get a triangle waveform by setting the #define. Reconstructed Triangle Waveform shows the
output signal.

And also the sine wave as shown in Reconstructed Sinusoid Waveform.
Notice on the bottom plot the harmonics are much more suppressed.

Generating the sine waveform uses floats. This requires much more code. You can look in /tmp/vsx-
examples/sine.pru0.map to see how much memory is being used. /tmp/vsx-examples/sine.pru0.map for Sine
Wave shows the first few lines for the sine wave.

Listing 5.18: /tmp/vsx-examples/sine.pru0.map for Sine Wave
R IR IR I b b b b S 2 b b b A S b b b S S b b b b g b b b b I 2 b b b b S 2 b b b b A g b b b b R b b b b S b b b b b b b db g b b b b b 2 4

PRU Linker Unix v2.1.5

Ahkkhkhkhhhkhhkhkhhrhkh kA Ak bk hkhhkhkh kA hhkhhkhhhkhkh kA hhkh bk hhhkhkhkhkhdhkhhkhkhhkhhhkhhrhkhhkhrxkhkhkrkhkhhkkhxkxkx*x

>> Linked Fri Jun 29 13:58:08 2018

(continues on next page)

5.10. Analog Wave Generator 121

PRU Cookbook

Agilent Technologies FRI JUN 29 11-41-11 2018
nd.oow 5] a F 00s 5000 Auto £ 2 83V

Perliod[1): 163.5us
+Width{1): 71 .bus
Frelh[l): 6.12kHz

More FFT Settings Menu f(t) = FFT(ChT) | FFT Sample Rate = 2.00MSa/s |

Windowy Span Center &) Scale Offset
Hanning 200kHz 6.10kHz 20dB/ 30.0dBV

Fig. 5.16: Reconstructed Sawtooth Waveform

122 Chapter 5. Building Blocks - Applications

PRU Cookbook

Agilent Technologies FRI JUN 29 13:36:15 2018
nd.oow 5] a F 00s 5000 Auto £ 2 60V

Peri0d|[1): 163.0us
+Width(1): 60.5us
Freq(1): 6.14kHz

More FFT Settings Menu f(t) = FFT(ChT) | FFT Sample Rate = 2.00MSa/s |

Windowy Span Center &) Scale Offset
Hanning 200kHz 6.10kHz 20dB/ 30.0dBV

Fig. 5.17: Reconstructed Sawtooth Waveform with Lower Cutoff Frequency

5.10. Analog Wave Generator 123

PRU Cookbook

Agilent Technologies FRI JUN 29 13:41:37 2018
nd.oow 5] a F 00s 5000 Auto £ 2 49y

Period(1 p: 185.0us
+Width{1)- 71.bus
Freq(1): 6.06kHz

More FFT Settings Menu f(t) = FFT(ChT) | FFT Sample Rate = 2.00MSa/s |
Windowy Span Center &) Scale Offset
Hanning 200kHz 6.10kHz 20dB/ 30.0dBV

Fig. 5.18: Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

124 Chapter 5. Building Blocks - Applications

PRU Cookbook

Agilent Technologies FRI JUN 29 13:54:09 2018
nd.oow 5] a F 00s 5000 Auto £ 2 49y

Period(1): 164 .bus
+Width(1): 77.5us
Freq(1): 6.08kHz

More FFT Settings Menu f(t) = FFT(Ch1) | FFT Sample Rate = 2.00MSa/s |

Windowy Span Center &) Scale Offset
Hanning 200kHz 6.10kHz 20dB/ 30.0dBV

Fig. 5.19: Reconstructed Triangle Waveform

5.10. Analog Wave Generator 125

PRU Cookbook

1% Agilent Technologies FRI JUN 29 13:59:21 2018
0 1.00v/ 8 g ¥ 00s 50004 Auto § 2.05V

Period(1): 163.5bus
+WWidth(1): 83.0us
Freq(1): 6.12kHz

More FFT Settings Menu f(t) = FFT(ChT) J FFT Sample Rate = 2.00MSa/s |

Windowy Span Center &) Scale Offset
Hanning 200kHz 6.10kHz 20dB/ 14.4dBV

Fig. 5.20: Reconstructed Sinusoid Waveform

126 Chapter 5. Building Blocks - Applications

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

PRU Cookbook

OUTPUT FILE NAME:

</tmp/prul-gen/sinel.out>
ENTRY POINT SYMBOL: ”_c_int00_noinit_noargs_noexit”

MEMORY CONFIGURATION

name
o
PAGE O:
PRU_IMEM
PAGE 1:

PRU_DMEM_0_1
PRU_DMEM_1 0

PAGE 2:

PRU_SHAREDMEM
PRU_INTC
PRU_CFG
PRU_UART
PRU_IEP
PRU_ECAP
RSVD27
RSVD21
L30CMC
MCASPO_DMA
UART1
UART2
I2C1
MCSPIO
DMTIMER2
MMCHSO
MBXO0
SPINLOCK
I2C2
MCSPI1
DCANO
DCAN1
PWMSSO
PWMSS1
PWMSS2
RSVD13
RSVD10
TPCC
GEMAC
DDR

SECTION ALLOCATION MAP

S

*

<4»Obj

output

ection page

text:_c_int00*
0

text 0

00000014

00000014

origin length
00000000 00002000
00000000 00002000
00002000 00002000
00010000 00003000
00020000 00001504
00026000 00000044
00028000 00000038
0002e000 0000031c
00030000 00000060
00032000 00000100
00032400 00000100
40000000 00010000
46000000 00000100
48022000 00000088
48024000 00000088
4802a000 000000d8
48030000 000001a4
48040000 0000005¢
48060000 00000300
480c8000 00000140
480cal00 00000880
4819c000 000000d8
481a0000 000001a4
481cc000 000001e8
48140000 000001e8
48300000 000002c4
48302000 000002c4
48304000 000002c4
48310000 00000100
48318000 00000100
49000000 00001098
42100000 0000128c
80000000 00000100
at
origin length
00000000 00000014
00000000 00000014

(.text:_c_int00_noinit_noargs_noexit)

000018ac
00000374

000018c0O

00000154
00000000

00000000
00000000
00000044
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

tributes/

(continued from previous page)

input sections

rtspruv3_le.lib

rtspruv3_le.lib

address: 00000000
unused attr fill
00000740 RWIX
0000leac RWIX
00002000 RWIX
00003000 RWIX
00001504 RWIX
00000000 RWIX
00000038 RWIX
0000031c RWIX
00000060 RWIX
00000100 RWIX
00000100 RWIX
00010000 RWIX
00000100 RWIX
00000088 RWIX
00000088 RWIX
000000d8 RWIX
000001ad4 RWIX
0000005¢c RWIX
00000300 RWIX
00000140 RWIX
00000880 RWIX
000000d8 RWIX
000001a4 RWIX
000001e8 RWIX
000001e8 RWIX
000002c4 RWIX
000002c4 RWIX
000002c4 RWIX
00000100 RWIX
00000100 RWIX
00001098 RWIX
0000128c RWIX
00000100 RWIX

boot_special.

sin.obj (.

(continues on next page)

5.10. Analog Wave Generator

127

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

PRU Cookbook

—text:sin)

00000388
—text:_TI_frcmpyd)
0000069c
—text:_ TI_frcaddd)
000008f4
—text:___pruabi_mpyd)
00000b48
—text:___pruabi_addd)
00000d90
—text:_ pruabi_mpyf)
00000£58
—text :modf)
00001058
—_pruabi_gtd)
0000110c
—_pruabi_ged)
000011bc
—_pruabi_1ltd)
0000126¢
0000131c
—text:_ TI_frcmpyf)
000013c4
—text:___pruabi_fixdu)
00001464
—text:___pruabi_nround)
00001500
—text:__pruabi_eqd)
00001590
—~text:_ TI_renormd)
0000161c
—~text:_ pruabi_fixdi)
000016a8
—text:__pruabi_fltid)
0000172c
—text:_ pruabi_cvtfd)
000017a4
—text:_ _pruabi_fltuf)
000017f4
—text:__pruabi_asri)
00001820
—~text:__ pruabi_subd)
0000184c
—text:_ pruabi_mpyi)
00001870
—text:___pruabi_negd)
00001890
—text:__pruabi_trunc)
000018b0
—text:abort)
000018b8

—~text:loader_exit)

.stack 1
—stack)
.cinit 1

.fardata 1

00000000
00000000

00000004

00000000

00000100

00000314

00000258

00000254

00000248

000001c8

00000100

000000b4

000000b0O

000000b0

000000b0O
000000a8

000000a0

0000009¢

00000090

0000008c

0000008¢c

00000084

00000078

00000050

0000002¢

0000002¢c

00000024

00000020

00000020

00000008

00000008

00000100

00000004

000000fc

00000000

00000040

sinel.obj
rtspruv3_le.lib

UNINITIALIZED
rtspruv3_le.lib

——HOLE—-

UNINITIALIZED

(continued from previous page)

frcmpyd.obj (.
frcaddd.obj (.
mpyd.obj (.
addd.obj (.
mpyf.obj (.
modf.obj (.
gtd.obj (.text:_
(.text:_

ged.obj

ltd.obj (.text:_

(.text:main)

frcmpyf.obj (.
fixdu.obj (.
round.obj (.
egld.obj (.
renormd.obj (.
fixdi.obj (.
fltid.obj (.
cvtfd.obj (.
fltuf.obj (.
asri.obj (.
subd.obj (.
mpyi.obj (.
negd.obj (.
trunc.obj (.
exit.obj (.

exit.obj (.

boot.obj (.

(continues on next page)

128

Chapter 5. Building Blocks - Applications

99

100

101

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

126

127

128

129

130

132

133

135

136

138

139

140

141

143

144

145

146

147

148

149

150

PRU Cookbook

—fardata:R$1)

.resource_table

*

1

.creqg.PRU_CFG.

*

2

—near)

.creqg.PRU_CFG.

*

2

.creqg.PRU_CFG.

*

2

.creqg.PRU_CFG.

*

2

00000100 00000040 rtspruv3_le.lib
00000140 00000014
00000140 00000014 sinel.obj

noload.near

00026000 00000044 NOLOAD SECTION
00026000 00000044 sinel.obj

near

00026044 00000000 UNINITIALIZED

noload. far

00026044 00000000 NOLOAD SECTION
far
00026044 00000000 UNINITIALIZED

SEGMENT ATTRIBUTES

0 PHA_PAGE 1 1
1 PHA_PAGE 2 1

seg value

GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name

abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs

address

000018b8
00026000
481cc000
481d0000
80000000
48040000
42100000
4802a000
4819¢c000
40000000
480c8000
46000000
48030000
481a0000
48060000
00026000
00000000
00002000
00030000
0002e000
00020000
00010000
00028000
48300000
48302000
48304000
48318000

CSSEXIT

CT_CFG

__ PRU_CREG_BASE_DCANO
__PRU_CREG_BASE_DCAN1
__PRU_CREG_BASE_DDR
__PRU_CREG_BASE_DMTIMER2

__ PRU_CREG_BASE_GEMAC
__PRU_CREG_BASE_I2C1
__PRU_CREG_BASE_I2C2
__PRU_CREG_BASE_L30CMC
__PRU_CREG_BASE_MBXO0
__PRU_CREG_BASE_MCASP0O_DMA
__PRU_CREG_BASE_MCSPIO
__PRU_CREG_BASE_MCSPI1
__PRU_CREG_BASE_MMCHSO
__PRU_CREG_BASE_PRU_CFG
__PRU_CREG_BASE_PRU_DMEM_0_1
__PRU_CREG_BASE_PRU_DMEM 1 0
__PRU_CREG_BASE_PRU_ECAP
__PRU_CREG_BASE_PRU_IEP
__PRU_CREG_BASE_PRU_INTC
__PRU_CREG_BASE_PRU_SHAREDMEM
__PRU_CREG_BASE_PRU_UART
__PRU_CREG_BASE_PWMSSO
__PRU_CREG_BASE_PWMSS1
__PRU_CREG_BASE_PWMSS2
__PRU_CREG_BASE_RSVD10

(continued from previous page)

sin.obj (.

(.resource_table:retain)

(.creg.PRU_CFG.noload.

(continues on next page)

5.10. Analog Wave Generator

129

158

159

160

161

163

164

165

166

167

168

169

170

172

173

175

176

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

198

199

200

201

202

203

205

206

208

209

210

211

213

214

215

216

217

218

PRU Cookbook

(continued from previous page)

abs 48310000 _ PRU_CREG_BASE_RSVD13
abs 00032400 _ PRU_CREG_BASE_RSVD21
abs 00032000 _ PRU_CREG_BASE_RSVD27
abs 480ca000 _ PRU_CREG_BASE_SPINLOCK
abs 49000000 _ PRU_CREG_BASE_TPCC
abs 48022000 _ PRU_CREG_BASE_UARTI1
abs 48024000 _ PRU_CREG_BASE_UART?2
abs 0000000e _ PRU_CREG_DCANO
abs 0000000f _ PRU_CREG_DCAN1
abs 0000001f _ PRU_CREG_DDR
abs 00000001 _ PRU_CREG_DMTIMER2
abs 00000009 _ PRU_CREG_GEMAC
abs 00000002 _ PRU_CREG_I2C1
abs 00000011 _ PRU_CREG_I2C2
abs 0000001e _ PRU_CREG_L30CMC
abs 00000016 _ PRU_CREG_MBXO
abs 00000008 __ PRU_CREG_MCASPO_DMA
abs 00000006 _ PRU_CREG_MCSPIO
abs 00000010 _ PRU_CREG_MCSPI1
abs 00000005 _ PRU_CREG_MMCHSO
abs 00000004 _ PRU_CREG_PRU_CFG
abs 00000018 _ PRU_CREG_PRU_DMEM 0_1
abs 00000019 _ PRU_CREG_PRU_DMEM_1_0
abs 00000003 _ PRU_CREG_PRU_ECAP
abs 0000001a _ PRU_CREG_PRU_IEP
abs 00000000 __ PRU_CREG_PRU_INTC
abs 0000001¢c _ PRU_CREG_PRU_SHAREDMEM
abs 00000007 _ PRU_CREG_PRU_UART
abs 00000012 _ PRU_CREG_PWMSSO
abs 00000013 _ PRU_CREG_PWMSS1
abs 00000014 _ PRU_CREG_PWMSS2
abs 0000000a _ PRU_CREG_RSVD10
abs 0000000d _ PRU_CREG_RSVD13
abs 00000015 _ PRU_CREG_RSVD21
abs 0000001b _ PRU_CREG_RSVD27
abs 00000017 _ PRU_CREG_SPINLOCK
abs 0000001d _ PRU_CREG_TPCC
abs 0000000b __ PRU_CREG_UART1
abs 0000000c __ _PRU_CREG_UART2
1 00000100 _ TI_STACK_END
abs 00000100 _ TI_STACK_SIZE
0 0000069c _ TI_frcaddd
0 00000388 _ TI_frcmpyd
0 0000131c __ _TI_ frcmpyf
0 00001590 _ TI_renormd
abs ffffffff _ binit_
abs ffffffff _ c_args_
0 00000b48 _ pruabi_addd
0 000017f4 _ pruabi_asri
0 0000172¢c __pruabi_cvtfd
0 00001500 _ _pruabi_eqd
0 0000161c _ pruabi_fixdi
0 000013c4 _ pruabi_fixdu
0 000016a8 _ pruabi_fltid
0 000017a4 _ _pruabi_fltuf
0 0000110c _ _pruabi_ged
0 00001058 _ pruabi_gtd
0 000011bc _ _pruabi_ltd
0 000008f4 _ pruabi_mpyd
0 00000d90 _ pruabi_mpyf
0 0000184c _ pruabi_mpyi
(continues on next page)
130 Chapter 5. Building Blocks - Applications

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242

243

244

245

246

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

268

269

270

271

272

273

275

276

278

279

PRU Cookbook

00001870
00001464
00001820
00001890
00000000
00000000
000018b0
bs fEffffff
0000126¢
00000£58
00000140
00000014

O OO OO O

o))

o - O O

GLOBAL SYMBOLS:

page address

00000000
00000014
00000388
0000069¢c
000008£4
00000b48
00000d90
00000£58
00001058
0000110c¢c
000011bc
0000126¢c
0000131c
000013c4
00001464
00001500
00001590
000016lc
000016a8
0000172c
000017a4
000017£4
00001820
0000184c
00001870
00001890
000018b0
000018b8
00000000
00000100
00000140
00026000
00000000
00000000
abs 00000001
abs 00000002
abs 00000003
abs 00000004
abs 00000005
abs 00000006
abs 00000007
abs 00000008
abs 00000009

AR T eoNeoleololNoNeololoNoNoNoloNolNoNolNoNoNoloNoNolNolNoNoNolNolNolNe]

U]
O O
n »

__pruabi_negd
__pruabi_nroun
__pruabi_subd
__pruabi_trunc

_c_int00_noinit_noargs_noexit

_stack

abort

binit

main

modf
pru_remoteproc
sin

SORTED BY Symb

_Cc_int00_noinit_noargs_noexit

sin

__ TI_ frcmpyd
__TI_frcaddd
__pruabi_mpyd
__pruabi_addd
__pruabi_mpyf
modf
__pruabi_gtd
__pruabi_ged
__pruabi_1ltd
main

__TI_ frcmpyf
__pruabi_fixdu
_ _pruabi_nroun
__pruabi_eqd

_ TI_renormd

_ pruabi_fixdi
__pruabi_fltid
__pruabi_cvtfd
_ _pruabi_fltuf
__pruabi_asri
__pruabi_subd
__pruabi_mpyi
__pruabi_negd
__pruabi_trunc
abort

CSSEXIT

_stack

_ TI_STACK_END
pru_remoteproc
CT_CFG

_ PRU_CREG_BAS
__ PRU_CREG_PRU
_ PRU_CREG_DMT
_ PRU_CREG_I2C
__ PRU_CREG_PRU
_ PRU_CREG_PRU
__ PRU_CREG_MMC
__ PRU_CREG_MCS
_ PRU_CREG_PRU
__ PRU_CREG_MCA
__ PRU_CREG_GEM

d

_ResourceTable

ol Address

d

_ResourceTable

E_PRU_DMEM_0_1
_INTC
IMER2

1

_ECAP
_CFG
HSO

PIO
_UART
SPO_DMA
AC

(continued from previous page)

(continues on next page)

5.10. Analog Wave Generator

131

280

281

282

283

285

286

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

312

313

314

315

316

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

PRU Cookbook

abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs
abs

0000000a
0000000b
0000000¢c
0000000d
0000000e
0000000£
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001a
0000001b
0000001c
0000001d
0000001e
0000001£
00000100
00002000
00010000
00020000
00026000
00028000
0002e000
00030000
00032000
00032400
40000000
46000000
48022000
48024000
4802a000
48030000
48040000
48060000
480c8000
480cal00
4819c000
481a0000
481cc000
481d0000
48300000
48302000
48304000
48310000
48318000
49000000
42100000
80000000
fEffffff
fEfEfEfff
bl i i i i o i

[100 symbols]

lines=1..22

__ PRU_CREG_RSVD10
___PRU_CREG_UARTI1

_ PRU_CREG_UART2

__ PRU_CREG_RSVD13
___PRU_CREG_DCANO

_ PRU_CREG_DCAN1

_ PRU_CREG_MCSPI1

_ _PRU_CREG_I2C2

_ PRU_CREG_PWMSSO

__ PRU_CREG_PWMSS1

_ PRU_CREG_PWMSS2

_ PRU_CREG_RSVD21

__ PRU_CREG_MBXO0

_ PRU_CREG_SPINLOCK

_ PRU_CREG_PRU_DMEM_0_1
_ PRU_CREG_PRU_DMEM_1_0
_ PRU_CREG_PRU_TIEP

_ PRU_CREG_RSVD27

_ PRU_CREG_PRU_SHAREDMEM
_ PRU_CREG_TPCC

_ PRU_CREG_L30CMC

_ PRU_CREG_DDR

_ TI_STACK_SIZE

_ PRU_CREG_BASE_PRU_DMEM_1_0
_ PRU_CREG_BASE_PRU_SHAREDMEM
_ PRU_CREG_BASE_PRU_INTC
_ PRU_CREG_BASE_PRU_CFG
_ PRU_CREG_BASE_PRU_UART
_ PRU_CREG_BASE_PRU_TIEP
_ PRU_CREG_BASE_PRU_ECAP
_ PRU_CREG_BASE_RSVD27

_ PRU_CREG_BASE_RSVD21
__ PRU_CREG_BASE_L30CMC
__ _PRU_CREG_BASE_MCASPO_DMA
_ PRU_CREG_BASE_UARTI1

_ PRU_CREG_BASE_UART?2

_ PRU_CREG_BASE_I2C1

_ PRU_CREG_BASE_MCSPIO
__ PRU_CREG_BASE_DMTIMER?2
__ PRU_CREG_BASE_MMCHSO0
__ PRU_CREG_BASE_MBXO0

_ PRU_CREG_BASE_SPINLOCK
__PRU_CREG_BASE_I2C2

_ PRU_CREG_BASE_MCSPI1

_ PRU_CREG_BASE_DCANO
__PRU_CREG_BASE_DCAN1

_ PRU_CREG_BASE_PWMSSO0
__ PRU_CREG_BASE_PWMSS1
__ PRU_CREG_BASE_PWMSS2

_ PRU_CREG_BASE_RSVD13

_ PRU_CREG_BASE_RSVD10
__ PRU_CREG_BASE_TPCC

_ PRU_CREG_BASE_GEMAC

_ PRU_CREG_BASE_DDR
__binit___

__c_args__

binit

(continued from previous page)

132

Chapter 5.

Building Blocks - Applications

PRU Cookbook

Notice line 15 shows 0x18c0 bytes are being used for instructions. That’s 6336 in decimal.

Now compile for the sawtooth and you see only 444 byes are used. Floating-point requires over 5K more bytes.
Use with care. If you are short on instruction space, you can move the table generation to the ARM and just
copy the table to the PRU.

5.11 WS2812 (NeoPixel) driver

5.11.1 Problem

You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light it up.

5.11.2 Solution

NeoPixel is Adafruit’'s name for the WS2812 Intelligent control LED. Each NeoPixel contains a Red, Green and
Blue LED with a PWM controller that can dim each one individually making a rainbow of colors possible. The
NeoPixel is driven by a single serial line. The timing on the line is very sensesitive, which make the PRU a
perfect candidate for driving it.

Wire the input to P9__29 and power to 3.3V and ground to ground as shown in NeoPixel Wiring.

BeagleBone

fritzing
Fig. 5.21: NeoPixel Wiring

Test your wiring with the simple code in neol.pru0.c - Code to turn all NeoPixels’s white which to turns all pixels
white.

Listing 5.19: neol.pru0.c - Code to turn all NeoPixels's white

// Control a ws2812 (NeoPixel) display, All on or all off
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include ”prugpio.h”

(continues on next page)

5.11. WS2812 (NeoPixel) driver 133

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

PRU Cookbook

#define
#define
#define
#define
#define
#define

STR_LEN 24
oneCyclesOn
oneCyclesOff
zeroCyclesOn
zeroCyclesOff
resetCycles

—use 60u

#define

#define

gpio P9 29

ONE

(continued from previous page)

700/5 // Stay on 700ns
800/5
350/5
600/5
60000/5 // Must be at least 50u, .

// output pin

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
uint32_t i;
for (i=0; i<STR_LEN*3*8; i++) {
#ifdef ONE
__R30 |= gpio; // Set the GPIO pin to 1
__delay_cycles (oneCyclesOn-1);
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (oneCyclesOff-2);
#else
__R30 |= gpio; // Set the GPIO pin to 1
__delay_cycles(zeroCyclesOn-1);
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (zeroCyclesOff-2);
#endif
}
// Send Reset
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (resetCycles);
__halt ();
}

neol.prul.c

5.11.3 Discussion

NeoPixel bit sequence (taken from WS2812 Data Sheet) shows the following waveforms are used to send a bit

of data.

Table 5.10: Where the times are:

Label Time in ns
TOH 350
TOL 800
T1H 700
TiL 600

Treset >50,000

The code in neol.pru0.c - Code to turn all NeoPixels’s white define these times in lines 7-10. The /5 is because
each instruction take 5ns. Lines 27-30 then set the output to 1 for the desired time and then to 0 and keeps

134

Chapter 5. Building Blocks - Applications

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

10

11

12

PRU Cookbook

Sequence chart:

TOL
0 code

TOH

| code |< | ot TILF

T1H

RET code Treset

Fig. 5.22: NeoPixel bit sequence

repeating it for the entire string length. NeoPixel zero timing shows the waveform for sending a 0 value. Note
the times are spot on.

Each NeoPixel listens for a RGB value. Once a value has arrived all other values that follow are passed on to
the next NeoPixel which does the same thing. That way you can individually control all of the NeoPixels.

Lines 38-40 send out a reset pulse. If a NeoPixel sees a reset pulse it will grab the next value for itself and start
over again.

5.12 Setting NeoPixels to Different Colors

5.12.1 Problem

| want to set the LEDs to different colors.

5.12.2 Solution

Wire your NeoPixels as shown in NeoPixel Wiring then run the code in neo2.pru0.c - Code to turn on green, red,
blue.

Listing 5.20: neo2.pru0.c - Code to turn on green, red, blue

// Control a ws2812 (neo pixel) display, green, red, blue, green,
#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”

#include ”prugpio.h”

#define STR_LEN 3

#define oneCyclesOn 700/5 // Stay on 700ns
#define oneCyclesOff 800/5

#define zeroCyclesOn 350/5

#define zeroCyclesOff 600/5

#define resetCycles 60000/5 // Must be at least 50u, .

—use 60u
(continues on next page)

5.12. Setting NeoPixels to Different Colors 135

PRU Cookbook

Agilent Technologies MON JUL 02 15:46:50 2018
' g 200v/ § a 5 00s 50008/ Auto f 153V

Measure Current Min
+Width{2): 350ns . 350ns
i : 600ns 600ns
950ns 950.00ns 950ns

+Width(2): 350ns -Width(2): 600ns Period{? }: 950ns

Clear Meas 1 ’ Clear Meas 2 y Clear Meas 3 y Clear ’

+Width{2) -Width(2) Period(2) All

Fig. 5.23: NeoPixel zero timing

136 Chapter 5. Building Blocks - Applications

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

PRU Cookbook

(continued from previous page)

#define gpio P9_29 // output pin

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

uint32_t color[STR_LEN] = {0x0f0000, 0x000f00, 0x0000f}; ey
—~green, red, blue
int i, j;

for (j=0; Jj<STR_LEN; Jj++) {
for (i=23; 1i>=0; i--) H{
if (color[j] & (Ox1<<i)) {
__R30 |= gpio; // Set the.
—GPIO pin to 1
__delay_cycles (oneCyclesOn-1);

__R30 &= ~gpio; // Clear the.
—~GPIO pin
__delay_cycles (oneCyclesOff-2);
} else {
__R30 |= gpio; // Set the.
—GPIO pin to 1
__delay_cycles(zeroCyclesOn-1);
_ R30 &= ~gpio; // Clear the.
—~GPIO pin
__delay_cycles(zeroCyclesOff-2);
}
t
}
// Send Reset
__R30 &= ~gpio; // Clear the GPIO pin

__delay_cycles (resetCycles);

__halt();

neo2.prul.c

This will make the first LED green, the second red and the third blue.

5.12.3 Discussion

NeoPixel data sequence shows the sequence of bits used to control the green, red and blue values.

‘ G7 ‘ Gé ‘ G5 | G4 ‘ a3 |(13

mlc;nlm‘nﬁlns

R4IR3|R2|RI|R£I|]3?|BF:‘BS

B4IB3|E1IBI|BO|

Fig. 5.24: NeoPixel data sequence

Note: The usual order for colors is RGB (red, green, blue), but the NeoPixels use GRB (green, red, blue).

Line-by-line for neo2.pru0.c is the line-by-line for neo2 .prul.c.

5.12. Setting NeoPixels to Different Colors 137

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PRU Cookbook

Table 5.11: Line-by-line for neo2.pru0.c

Line Explanation Define the string of colors to be output. Here the ordering of the bits is the same as NeoPixel data sequence, GRB.

23

26 Loop for each color to output.

27 Loop for each bit in an GRB color.

28 Get the j~th” color and mask off all but the i”th” bit. (Ox1:ref:‘i) takes the value 0x1 and shifts it left i bits. When anded (&)
with colorlj] it will zero out all but the i”“th” bit. If the result of the operation is 1, the if is done, otherwise the else is done.

29- Send a 1.

32

34- Send a 0.

37

42- Send a reset pulse once all the colors have been sent.
43

Note: This will only change the first STR_LEN LEDs. The LEDs that follow will not be changed.

5.13 Controlling Arbitrary LEDs

5.13.1 Problem

| want to change the 10”~th”~ LED and not have to change the others.

5.13.2 Solution

You need to keep an array of colors for the whole string in the PRU. Change the color of any pixels you want in
the array and then send out the whole string to the LEDs. neo3.pru0.c - Code to animate a red pixel running
around a ring of blue shows an example animates a red pixel running around a ring of blue background. Neo3
Video shows the code in action.

Listing 5.21: neo3.pru0.c - Code to animate a red pixel running around
a ring of blue

// Control a ws2812 (neo pixel) display, green, red, blue, green,
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include ”prugpio.h”

#define STR_LEN 24

#define oneCyclesOn 700/5 // Stay on 700ns
#define oneCyclesOff 800/5

#define zeroCyclesOn 350/5

#define zeroCyclesOff 600/5

#define resetCycles 60000/5 // Must be at least 50u,.
—use 60u

#define gpio P9_29 // output pin

#define SPEED 20000000/5 // Time to wait between updates

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{

0x00000£;
0x000£00;

uint32_t background
uint32_t foreground

(continues on next page)

138 Chapter 5. Building Blocks - Applications

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

PRU Cookbook

(continued from previous page)

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

uint32_t color[STR_LEN]; // green, red, blue
int i, j;
int k, oldk = 0;;
// Set everything to background
for (i=0; i<STR_LEN; i++) {
color[i] = background;

}

while (1) {
// Move forward one position
for (k=0; k<STR_LEN; k++) {
color[oldk] = background;
color [k] = foreground;
oldk=k;
// Output the string
for (j=0; Jj<STR_LEN; j++) {
for (1i=23; i>=0; i--) {
if (color[j] & (Ox1<<i)) {
__R30 |= gpio;
// Set the GPIO pin to 1
__delay_cycles (oneCyclesOn—

__R30 &= ~gpio;

__delay_cycles (oneCyclesOff-

__R30 |= gpio;
__delay_cycles (zeroCyclesOn-—
_ _R30 &= ~gpio;

_ _delay_cycles (zeroCyclesOff—

1) ;

= // Clear the GPIO pin

—2);

} else {

- // Set the GPIO pin to 1

=1);

= // Clear the GPIO pin

—2);

t
}
// Send Reset
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (resetCycles);

// Wait
__delay_cycles (SPEED) ;

neo3.prul.c

5.13.3 Neo3 Video

neo3.prul.c — Simple animation

5.13. Controlling Arbitrary LEDs

139

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

PRU Cookbook

5.13.4 Discussion

Table 5.12: Here’s the highlights.

Line Explanation

32,33 Initiallize the array of colors.
38-41 Update the array.

44-58 Send the array to the LEDs.
60-61 Send a reset.

64 Wait a bit.

5.14 Controlling NeoPixels Through a Kernel Driver

5.14.1 Problem

You want to control your NeoPixels through a kernel driver so you can control it through a /dev interface.

5.14.2 Solution

The rpmsg_pru driver provides a way to pass data between the ARM processor and the PRUs. It's already
included on current images. neo4.pru0.c - Code to talk to the PRU via rpmsg_pru shows an example.

Listing 5.22: neo4.pru0.c - Code to talk to the PRU via romsg_pru

// Use rpmsg to control the NeoPixels via /dev/rpmsg_pru30
#include <stdint.h>

#include <stdio.h>

#include <stdlib.h> // atoi
#include <string.h>

#include <pru_cfg.h>

#include <pru_intc.h>

#include <rsc_types.h>

#include <pru_rpmsg.h>

#include ”resource_table_0.h”

#include ”"prugpio.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

/* Host-0 Interrupt sets bit 30 in register R31 */
#define HOST_ INT ((uint32_t) 1 << 30)

/* The PRU-ICSS system events used for RPMsg are defined in the Linux device.
—~tree

* PRUO uses system event 16 (To ARM) and 17 (From ARM)

* PRUl uses system event 18 (To ARM) and 19 (From ARM)

*/

#define TO_ARM HOST 16

#define FROM_ARM _HOST 17

Vs
* Using the name 'rpmsg-pru' will probe the rpmsg_pru driver found
* at linux-x.y.z/drivers/rpmsg/rpmsg_pru.c

4

#define CHAN_NAME ”rpmsg-pru”
#define CHAN_DESC ”Channel 307”
#define CHAN_PORT 30

(continues on next page)

140 Chapter 5. Building Blocks - Applications

https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_pru.c

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

PRU Cookbook

(continued from previous page)
Vs
* Used to make sure the Linux drivers are ready for RPMsg communication
* Found at linux-x.y.z/include/uapi/linux/virtio_config.h
*/
#define VIRTIO_CONFIG_S_DRIVER OK 4

char payload[RPMSG_BUF_SIZE];

#define STR_LEN 24

#define oneCyclesOn 700/5 // Stay on for 700ns
#define oneCyclesOff 600/5

#define zeroCyclesOn 350/5

#define zeroCyclesOff 800/5

#define resetCycles 51000/5 // Must be at least 50u,.
—use 51u

#define out P9 _29 // Bit number to output on

#define SPEED 20000000/5 // Time to wait between updates
uint32_t color [STR_LEN]; // green, red, blue

/*
* main.c
*/
void main (void)
{
struct pru_rpmsg_ transport transport;
uintl6_t src, dst, len;
volatile uint8_t *status;

uint8_t r, g, b;

int i, j;

// Set everything to background

for (i=0; i<STR_LEN; i++) {
color[i] = 0x010000;

}

/* Allow OCP master port access by the PRU so the PRU can read.
—external memories */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

/* Clear the status of the PRU-ICSS system event that the ARM will.
—~use to 'kick' us */
#ifdef CHIP_IS amb7xx
CT_INTC.SICR_bit.STATUS_CLR_INDEX = FROM_ARM_HOST;
#else
CT_INTC.SICR bit.STS_CLR_IDX = FROM_ARM_ HOST;
#endif

/* Make sure the Linux drivers are ready for RPMsg communication */
status = &resourceTable.rpmsg_vdev.status;
while (! (*status & VIRTIO_CONFIG_S_DRIVER_OK)) ;

/* Initialize the RPMsg transport structure */
pru_rpmsg_init (&transport, &resourceTable.rpmsg_vring0, &
—~resourceTable.rpmsg_vringl, TO_ARM_HOST, FROM_ARM_HOST) ;

/* Create the RPMsg channel between the PRU and ARM user space using.
—the transport structure. */

while (pru_rpmsg_channel (RPMSG_NS_CREATE, é&transport, CHAN_NAME, .
—CHAN_DESC, CHAN_PORT) != PRU_RPMSG_SUCCESS) ;

(continues on next page)

5.14. Controlling NeoPixels Through a Kernel Driver 141

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

PRU Cookbook

(continued from previous page)
while (1) {
/* Check bit 30 of register R31 to see if the ARM has kicked.
—us */
if (__R31 & HOST_INT) {
/* Clear the event status */
#ifdef CHIP_IS amb7xx
CT_INTC.SICR bit.STATUS_CLR_INDEX = FROM_ARM_HOST;
#else
CT_INTC.SICR_bit.STS_CLR_IDX = FROM_ARM_HOST;
#endif
/* Receive all available messages, multiple messages.
—~can be sent per kick */
while (pru_rpmsg_receive (&transport, &src, &dst, .

—payload, &len) == PRU_RPMSG_SUCCESS) {

char *ret; // rest of payload after front.
—character is removed

int index; // index of LED to control

// Input format is: 1index red green blue

index = atoi (payload);

// Update the array, but don't write it out.
if ((index >=0) & (index < STR_LEN)) {
ret = strchr(payload, ' "); / /o
—Skip over index
r = strtol (&ret[1], NULL, O0);
ret = strchr(sret[1], ' '); o=
—~Skip over r, etc.
g = strtol(&ret[1l], NULL, O0);
ret = strchr(&ret[1], ' ");
b = strtol(&ret[1], NULL, O0);

color[index] = (g<<16) | (r<<8) |b; /
-/ String wants GRB
}
// When index is -1, send the array to the LED.

—string
if (index == -1) {
// Output the string
for (j=0; J<STR_LEN; Jj++) {
// Cycle through each bit
for (i=23; 1i>=0; i—-) {
if(color[j] & (Oxi<
—<i)) |
__R30 |= out;
- // Set the GPIO pin to 1
__delay_
—cycles (oneCyclesOn-1);
__R30 &= ~
—out; // Clear the GPIO pin
__delay_
—~cycles (oneCyclesOff-14);
} else {
__R30 |= out;
- // Set the GPIO pin to 1
__delay_
—cycles (zeroCyclesOn-1);
__R30 &= ~
< (out) ; // Clear the GPIO pin
__delay_

—~cycles (zeroCyclesOff-14);

(continues on next page)

142 Chapter 5. Building Blocks - Applications

133

134

135

136

137

138

139

140

141

143

144

145

PRU Cookbook

(continued from previous page)

}
// Send Reset
__R30 &= ~out; // Clear the._

—~GPIO pin
__delay_cycles (resetCycles);
// Wait
__delay_cycles (SPEED) ;

}
}
}
}
}

neod.prul.c

Run the code as usual.

bone$ make TARGET=neo4.prul

/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—Black, TARGET=neo4.prul

= Stopping PRU O

= copying firmware file /tmp/vsx—examples/neod.prul.out to /lib/firmware/
—am335x-prul-fw

write_init_pins.sh

= Starting PRU O

MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN =0

PRU_DIR /sys/class/remoteproc/remoteprocl

bone$ echo 0 Oxff 0 127 > /dev/rpmsg_pru30
bone$ echo -1 > /dev/rpmsg_pru30

Todo: get this working on the 5.10 kernel

/dev/rpmsg_pru30 is a device driver that lets the ARM talk to the PRU. The first echo says to set the
07~th”™ LED to RGB value Oxff 0 127. (Note: you can mix hex and decimal.) The second echo tells the driver
to send the data to the LEDs. Your 0~th”™ LED should now be lit.

5.14.3 Discussion

There’s a lot here. I'll just hit some of the highlights in Line-by-line for neo4.pru0.c.

5.14. Controlling NeoPixels Through a Kernel Driver 143

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

PRU Cookbook

Table 5.13: Line-by-line for neo4.pru0.c

Line Explanation

30 The CHAN_NAME of rpmsg-pru matches that prmsg_pru driver that is is already installed. This connects this PRU to the
driver.

32 The CHAN_PORT tells it to use port 30. That's why we use /dev/rpmsg_pru30

40 payload[] is the buffer that receives the data from the ARM.

42-48 Same as the previous NeoPixel examples.

52 color[] is the state to be sent to the LEDs.

66-68 color[] is initialized.

70-85 Here are a number of details needed to set up the channel between the PRU and the ARM.

88 Here we wait until the ARM sends us some numbers.

99 Receive all the data from the ARM, store it in payload[].

101- The data sent is: index red green blue. Pull off the index. If it’s in the right range, pull off the red, green and blue values.

111

113 The NeoPixels want the data in GRB order. Shift and OR everything together.

116- If the index = -1, send the contents of color to the LEDs. This code is same as before.

133

You can now use programs running on the ARM to send colors to the PRU.

neo-rainbow.py - A python program using /dev/rpmsg _pru30 shows an example.

Listing 5.23: neo-rainbow.py - A python program using
/dev/rpmsg_pru30

#!/usr/bin/python3
from time import sleep
import math

len = 24
amp = 12
f = 25
shift 3

phase = 0

Open a file

fo = open(”/dev/rpmsg_pru30”, "wb”, 0)

while True:

for i in range (0, len):
r = (amp * (math.sin(2*math.pi*f* (i-phase-0*shift)/len) + 1)) + 1;
g = (amp * (math.sin(2*math.pi*f* (i-phase-1*shift)/len) + 1)) + 1;
b = (amp * (math.sin(2*math.pi*f* (i-phase-2*shift)/len) + 1)) + 1;

fo.write (b”%d %d %d $d\n” % (i, r, g, b))
print (70 0 127 %d” % (i))

fo.write(b”-1 0 0 0\n”);
phase = phase + 1
sleep(0.05)

Close opened file
fo.close ()

neo-rainbow.py

Line 19 writes the data to the PRU. Be sure to have a newline, or space after the last number, or you numbers
will get blurred together.

Switching from pru0 to prul with rpomsg_pru

There are three things you need to change when switching from pru0 to prul when using rpmsg_pru.

1. The include on line 10 is switched to #include "resource_table_1.h"” (0is switched to a 1)

144 Chapter 5. Building Blocks - Applications

PRU Cookbook

2. Line 17 is switched to #define HOST_INT ((uint32_t) 1 << 31) (30isswitched to 31.)
3. Lines 23 and 24 are switched to:

#define TO_ARM_HOST 18
#define FROM_ARM_HOST 19

These changes switch to the proper channel numbers to use prul instead of pruO.

5.15 RGB LED Matrix - No Integrated Drivers

5.15.1 Problem

You have a RGB LED matrix (RGB LED Matrix - No Integrated Drivers (Falcon Christmas)) and want to know at
a low level how the PRU works.

5.15.2 Solution

Here is the datasheet, but the best description I've found for the RGB Matrix is from Adafruit. I've reproduced
it here, with adjustments for the 64x32 matrix we are using.

information

There’s zero documentation out there on how these matrices work, and no public datasheets or spec sheets
so we are going to try to document how they work.

First thing to notice is that there are 2048 RGB LEDs in a 64x32 matrix. Like pretty much every matrix out
there, you can’t drive all 2048 at once. One reason is that would require a lot of current, another reason is
that it would be really expensive to have so many pins. Instead, the matrix is divided into 16 interleaved
sections/strips. The first section is the 1°st”™ ‘line’ and the 17°th” ‘line’ (64 x 2 RGB LEDs = 128 RGB LEDs),
the second is the 2°nd”™ and 18”th” line, etc until the last section which is the 16”~th”™ and 32"nd” line. You
might be asking, why are the lines paired this way? wouldn’t it be nicer to have the first section be the 1"st™
and 2°°nd” line, then 37rd”™ and 47th”, until the 157th”™ and 16”th”~? The reason they do it this way is so
that the lines are interleaved and look better when refreshed, otherwise we’d see the stripes more clearly.

So, on the PCB is 24 LED driver chips. These are like 74HC595s but they have 16 outputs and they are constant
current. 16 outputs * 24 chips = 384 LEDs that can be controlled at once, and 128 * 3 (R G and B) = 384. So
now the design comes together: You have 384 outputs that can control one line at a time, with each of 384 R,
G and B LEDs either on or off. The controller (say an FPGA or microcontroller) selects which section to currently
draw (using LA, LB, LC and LD address pins - 4 bits can have 16 values). Once the address is set, the controller
clocks out 384 bits of data (48 bytes) and latches it. Then it increments the address and clocks out another
384 bits, etc until it gets to address #15, then it sets the address back to #0

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

That gives a good overview, but there are a few details missing. rgb_python.py - Python code for driving RGB
LED matrix is a functioning python program that gives a nice high-level view of how to drive the display.

Todo: Test this

Listing 5.24: rgb_python.py - Python code for driving RGB LED matrix

#!/usr/bin/env python3
import Adafruit_BBIO.GPIO as GPIO

Define which functions are connect to which pins
(continues on next page)

5.15. RGB LED Matrix - No Integrated Drivers 145

https://cdn-shop.adafruit.com/product-files/2277/MI-T35P5RGBE-AE.pdf
https://www.adafruit.com/
https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

PRU Cookbook

OCE="P1_29”
LAT="P1_36"
CLK="P1_33"

Input data

R1="P2_10"
Gl1="pP2_8"
B1="P2_6"
R2="pP2_4"
G2="p2_2"
B2="p2_1"
LA="P2_32"
LB="P2_30"
LC="P1_31"
LD="P2_34"

Set everyt
GPIO.setup (O

(continued from previous page)

Output Enable, active low
Latch, toggle after clocking in a row of pixels
Clock, toggle after each pixel

pins
R1, G1, Bl are for the top rows (1-16) of pixels

R2, G2, B2 are for the bottom rows (17-32) of pixels

Address lines for which row (1-16 or 17-32) to update

hing as output ports
E, GPIO.OUT)

GPIO.setup (LAT, GPIO.OUT)

GPIO.setup (C

GPIO.setup
GPIO.setup
GPIO.setup
GPIO.setup
GPIO.setup
GPIO.setup

GPIO.setup (LA, GPIO.OUT

(
GPIO.setup (
GPIO.setup (
GPIO.setup (L

L
L
GPIO.output (

GPIO.output (

while True:
for bank

GPIO.
GPIO.

GPIO

GPIO.

Sh
co

(R
(G
(B
(R
(G
(B

LK, GPIO.OUT)

1, GPIO.OUT
1, GPIO.OUT
1, GPIO.OUT
2, GPIO.OUT
2, GPIO.OUT
2, GPIO.OUT

B, GPIO.OUT
C, GPIO.OUT
D, GPIO.OUT

OCE, 0) # Enable the display
LAT, 0) # Set latch to low

in range (64) :

output (LA, bank>>0&0x1)
output (LB, bank>>1&0x1)
.output (LC, bank>>2&0x1)
output (LD, bank>>3&0x1)

Select rows

ift the colors out. Here we only have four different
lors to keep things simple.

for i in range (16):

GPIO.output (R1, 1) # Top row, white
GPIO.output (G1, 1)
GPIO.output (B1, 1)

GPIO.output (R2, 1) # Bottom row, red
GPIO.output (G2, 0)
GPIO.output (B2, 0)

GPIO.output (CLK, O0) # Toggle clock
GPIO.output (CLK, 1)

GPIO.output (R1, 0) # Top row, black
GPIO.output (G1, 0)

(continues on next page)

146

Chapter 5. Building Blocks - Applications

66

67

68

69

70

71

72

73

74

75

76

77

78

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

PRU Cookbook

(continued from previous page)
GPIO.output (B1, 0)

GPIO.output (R2, 0) # Bottom row, green
GPIO.output (G2, 1)
GPIO.output (B2, 0)

GPIO.output (CLK, 0) # Toggle clock
GPIO.output (CLK, 1)

GPIO.output (OE 1)
GPIO.output (LAT, 1)
GPIO.output (LAT, O0)
GPIO.output (OE, 0)

Disable display while updating
Toggle latch

Enable display

rgb_python.py

Be sure to run the rgb_python _setup.sh script before running the python code.

Listing 5.25: rgb_python_setup.sh

#!/bin/bash

Setup for 64x32 RGB Matrix
export TARGET=rgbl.prul

echo TARGET=$TARGET

Configure the PRU pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n $machine

if [$machine = "Black”]; then
echo ” Found”
pins=""
elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""
elif [Smachine = "PocketBeagle”]; then
echo ” Found”

prupins="P2_32 P1_31 P1_33 P1_29 P2_30 P2_34 P1_36"

gpiopins="P2_10 P2_06 P2_04 P2_01 P2_08 P2_02"

Uncomment for J2

gpiopins="Sgpiopins P2_27 P2 25 P2_05 P2 24 P2 22 P2 _18”
else

echo ” Not Found”

pins=""
fi

for pin in S$prupins

do
echo Spin
config-pin Spin pruout
config-pin $pin gpio
config-pin $pin out
config-pin —-g S$pin

done

for pin in Sgpiopins

do
echo Spin
config-pin $pin gpio
config-pin $pin out
config-pin —-gq S$pin
done

5.15. RGB LED Matrix - No Integrated Drivers 147

10

11

12

13

15

16

17

18

19

20

21

22

23

24

PRU Cookbook

rgb_python_setup.sh

Make sure line 29 is commented out and line 30 is uncommented. Later we’ll configure for pruout , but for
now the python code doesn’t use the PRU outs.

config-pin Spin pruout
config-pin $pin out

Your display should look like Display running rgb_python.py.

e

e

R R R R e a e Aaasasasa;

Fig. 5.25: Display running rgb_python.py

So why do only two lines appear at a time? That’s how the display works. Currently lines 6 and 22 are showing,
then a moment later 7 and 23 show, etc. The display can only display two lines at a time, so it cycles through
all the lines. Unfortunately, python is too slow to make the display appear all at once. Here’s where the PRU
comes in.

refblocks_rgbl is the PRU code to drive the RGB LED matrix. Be sure to run bone$ source
rgb_setup. sh first.

Listing 5.26: PRU code for driving the RGB LED matrix

// This code drives the RGB LED Matrix on the 1st Connector
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include ”prugpio.h”

#include ”rgb_pocket.h”

#define DELAY 10 // Number of cycles (5ns each) to wait after a write

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
// Set up the pointers to each of the GPIO ports
uint32_t *gpio[] = {

(uint32_t *) GPIOO,
(uint32_t *) GPIO1,
(uint32_t *) GPIOZ2,
(uint32_t *) GPIOS3

ti
uint32_t i, row;

(continues on next page)

148 Chapter 5. Building Blocks - Applications

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

PRU Cookbook

while (1) {

for (row=0;

(continued from previous page)

row<l1l6; row++) A

// Set the row address

<LC,LD)

—5)

—~bits

—makes sure the

__R30
__R30

for (i=

—~are all in

—pin | bll_pin;

—pin;

__R30

—pin | bll_pin;

—pin;

}
__R30

__R30
__R30

__R30

// Here we take advantage of the select bits (LA, LB,
// being sequential in the R30 register (bits 2,3,4,
// We shift row over so it lines up with the select.

// Oring (|=) with R30 sets bits to 1 and
// Anding (&=) clears bits to 0, the Oxffc mask.

// other bits aren't changed.
= row<<pru_sel0;
&= (row<<pru_sel0) |Oxffc3;

0; i<64; i++)
// Top row white
// Combining these to one write works because they.

// the same gpio port
gpiolrll_gpio] [GPIO_SETDATAOUT] = rll_pin | gll_

__delay_cycles (DELAY) ;;

// Bottom row red

gpiol[rl2_gpio] [GPIO_SETDATAOUT] = rl2_pin;
__delay_cycles (DELAY) ;

gpiolrl2_gpio] [GPIO_CLEARDATAQUT]

gl2_pin | bl2_
__delay_cycles (DELAY) ;

|= pru_clock; // Toggle clock
__delay_cycles (DELAY) ;
__R30 &= ~pru_clock;
_ _delay_cycles (DELAY) ;

// Top row black
gpio[rll_gpio] [GPIO_CLEARDATAOUT] = rll_pin | gll_

__delay_cycles (DELAY) ;

// Bottom row green
gpio[rl2_gpio] [GPIO_CLEARDATAOUT] = rl2_pin | bl2_

__delay_cycles (DELAY) ;
gpiol[rl2_gpio] [GPIO_SETDATAQOUT] = gl2_pin;
__delay_cycles (DELAY) ;

|= pru_clock; // Toggle clock
__delay_cycles (DELAY) ;
__R30 &= ~pru_clock;
__delay_cycles (DELAY) ;

|= pru_oe; // Disable display
__delay_cycles (DELAY) ;
|= pru_latch; // Toggle latch

__delay_cycles (DELAY) ;

&= ~pru_latch;

__delay_cycles (DELAY) ;

&= ~pru_oe; // Enable display

(continues on next page)

5.15. RGB LED Matrix - No Integrated Drivers 149

77

78

79

80

PRU Cookbook

(continued from previous page)
__delay_cycles (DELAY) ;

rgbl.prul.c

The results are shown in Display running rgb1.c on PRU 0.

Fig. 5.26: Display running rgb1l.c on PRU 0

The PRU is fast enough to quickly write to the display so that it appears as if all the LEDs are on at once.

5.15.3 Discussion

There are a lot of details needed to make this simple display work. Let’s go over some of them.
First, the connector looks like RGB Matrix /1 connector.

Notice the labels on the connect match the labels in the code. PocketScroller pin table shows how the pins on
the display are mapped to the pins on the PocketBeagle.

Todo: Make a mapping table for the Black

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

Table 5.14: PocketScroller pin table

J1 Connector Pin Pocket Headers gpio port and bit number Linux gpio number PRU R30 bit number
R1 P2_10 1-20 52

B1 P2_06 1-25 57

R2 P2_04 1-26 58

B2 P2_01 1-18 50

LA P2_32 3-16 112 PRUO.2
LC P1_31 3-18 114 PRUO.4
CLK P1_33 3-15 111 PRUO.1
OE P1_29 3-21 117 PRUO.7
Gl P2_08 1-28 60

G2 P2_02 1-27 59

LB P2_30 3-17 113 PRUO.3
LD P2_34 3-19 115 PRUO.5
LAT P1_36 3-14 110 PRUO.0

150 Chapter 5. Building Blocks - Applications

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

PRU Cookbook

J1 IN HUB75B

Fig. 5.27: RGB Matrix J1 connector

5.15. RGB LED Matrix - No Integrated Drivers

PRU Cookbook

The J1 mapping to gpio port and bit number comes from https://github.com/FalconChristmas/fpp/blob/master/
capes/pb/panels/PocketScroller.json. The gpio port and bit number mapping to Pocket Headers comes from
https://docs.google.com/spreadsheets/d/1IFRGVYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0.

Oscilloscope display of CLK, OE, LAT and R1 shows four of the signal waveforms driving the RGB LED matrix.

Agilent Technologies THU AUG 02 14:41:34 2018
ﬂIS.UUV/ @ 5.00v/ g 5.00v/ @ 5.00v/ =+ 319.7¢ 1.000% Auto 1.81V

b

i i i i e i i i e i i i et b ot b e e e e e e |

Max Std Dev Count
2.9MHz 1.6360kHz 7.471k
1.03MHz 0.0Hz 7.

Measure Current Mean
2.9MHz 2.9000MHz 2.8MHz
1.02MHz

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4
|
|
|

Freq(1}): 2.9MHz Freq{“}: 1.03MHz

%) Source ’ Select: y Measure ’ Settings Clear Meas Statistics
1 Freg Freq ~§ ~ ~

Fig. 5.28: Oscilloscope display of CLK, OE, LAT and R1
The top waveform is the CLK, the next is OE, followed by LAT and finally R1. The OE (output enable) is active
low, so most of the time the display is visible. The sequence is:
¢ Put data on the R1, G1, B1, R2, G2 and B2 lines
* Toggle the clock.

* Repeat the first two steps as one row of data is transferred. There are 384 LEDs (2 rows of 32 RGB LEDs
times 3 LED per RGB), but we are clocking in six bits (R1, G1, etc.) at a time, so 384/6=64 values need
to be clocked in.

* Once all the values are in, disable the display (OE goes high)

* Then toggle the latch (LAT) to latch the new data.

* Turn the display back on.

¢ Increment the address lines (LA, LB, LC and LD) to point to the next rows.
* Keep repeating the above to keep the display lit.

Using the PRU we are able to run the clock a about 2.9 MKHz. FPP waveforms shows the optimized assembler
code used by FPP clocks in at some 6.3 MHz. So the compiler is doing a pretty good job, but you can run some

152 Chapter 5. Building Blocks - Applications

https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0

PRU Cookbook

two times faster if you want to use assembly code. In fairness to FPP, it's having to pull it’s data out of RAM to
display it, so isn’t not a good comparison.

Agilent Technologies THU AUG 02 14:01:35 2018
n '5.00\// E 5.00V/ l 5.00V/ l 5.00V/ 32938 1.0008/ Stop f 1.81V

1
1
1
I
1
}
1
1
1
:
b \ i
i
HALARLE N
1
1
1
1
1
l
1
1
1
1
I
A
t
1
1
1
1
1
T
1
1
1
1
I

Measure Current Mean Min |
6.3MHz 4,8176MHz BOHZ
2.08MHz

Max Std Dev
7.7MHz 2.6175MHz
7.10MHz 731.22kHz

Freq(1); 6.3MHz Freq(?): 2.08MHz

Display On Reset Transparent Increment
] Statistics] Statistics

Fig. 5.29: FPP waveforms

The Adafruit description goes on to say:

information

The only downside of this technique is that despite being very simple and fast, it has no PWM control built-in!
The controller can only set the LEDs on or off. So what do you do when you want full color? You actually need to
draw the entire matrix over and over again at very high speeds to PWM the matrix manually. For that reason,
you need to have a very fast controller (50 MHz is a minimum) if you want to do a lot of colors and motion
video and have it look good.

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

This is what FPP does, but it's beyond the scope of this project.

5.16. Compiling and Inserting romsg_pru 153

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

10

11

12

13

14

15

16

17

PRU Cookbook

5.16.1 Problem

Your Beagle doesn’t have rpmsg_pru.

5.16.2 Solution

Do the following.

bone$ *cd code/05blocks/module*
bone$ *sudo apt install linux-headers-\ uname -r *
bone$ *wget https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_

—pru.c*
bone$ *make*

make -C /lib/modules/4.9.88-ti-r111/build M=S$PWD

make[1l]: Entering directory '/usr/src/linux-headers-4.9.88-ti-r111'

LD /home/debian/PRUCookbook/docs/code/05blocks/module/built-in.o

CC [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_
—sample.o

CC [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.o

Building modules, stage 2.
MODPOST 2 modules

cc /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_

—sample.mod.o
LD [M]
—sample.ko

/home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_

cc /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.mod.o

LD [M]
make [1]:
bone$ *sudo insmod rpmsg_pru
bone$ *lsmod | grep rpm*

rpmsg_pru 5799
virtio_rpmsg_bus 13620
rpmsg_core 8537

It’s now installed and ready to go.

5.17 Copyright

2
0
2 rpmsg_pru,virtio_rpmsg_bus

Listing 5.27: copyright.c

/home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.ko
Leaving directory '/usr/src/linux-headers-4.9.88-ti-r111"
.ko*

/*

* Copyright (C) 2015 Texas Instruments Incorporated — http://www.ti.com/

*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

B * Redistributions of source code must retain the above copyright

x notice, this list of conditions and the following disclaimer.

*

£ * Redistributions in binary form must reproduce the above copyright
A notice, this list of conditions and the following disclaimer in.
—~the

£ documentation and/or other materials provided with the

* distribution.

*

b * Neither the name of Texas Instruments Incorporated nor the names.
—~of

(continues on next page)

154 Chapter 5. Building Blocks - Applications

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PRU Cookbook

*

(continued from previous page)

its contributors may be used to endorse or promote products.

—~derived

e

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

copyright.c

5.17. Copyright

155

PRU Cookbook

156 Chapter 5. Building Blocks - Applications

2

Chapter 6

Accessing More I/O

So far the examples have shown how to access the GPIO pins on the BeagleBone Black’s P 9 header and through
the pass: [___]R30 register. Below shows how more GPIO pins can be accessed.

The following are resources used in this chapter.

Note: Resources
* P8 Header Table
* P9 Header Table
¢ AM572x Technical Reference Manual (Al)
e AM335x Technical Reference Manual (All others)

* PRU Assembly Language Tools

6.1 Editing /boot/uEnv.txt to Access the P8 Header on the Black

6.1.1 Problem

When | try to configure some pins on the P8 header of the Black | get an error.

bone$ *config-pin P8_28 pruout*
ERROR: open() for /sys/devices/platform/ocp/ocp:P8_28_pinmux/state failed, .
—No such file or directory

6.1.2 Solution

On the images for the BeagleBone Black, the HDMI display driver is enabled by default and uses many of the
P8 pins. If you are not using HDMI video (or the HDI audio, or even the eMMC) you can disable it by editing
/boot /uEnv.txt

Open /boot /uEnv.txt and scroll down always until you see:

Listing 6.1: /boot/uEnv.txt

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1

disable_uboot_overlay_ video=1

#disable_uboot_overlay_audio=1

157

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf

PRU Cookbook

Uncomment the lines that correspond to the devices you want to disable and free up their pins.

Tip: P8 Header Table shows what pins are allocated for what.

Save the file and reboot. You now have access to the P8 pins.

6.2 Accessing gpio

6.2.1 Problem

I've used up all the GPIO in pass: [___]R30, where can | get more?

6.2.2 Solution

So far we have focused on using PRU 0. Mapping bit positions to pin names shows that PRU 0 can access ten
GPIO pins on the BeagleBone Black. If you use PRU 1 you can get to an additional 14 pins (if they aren’t in use
for other things.)

What if you need even more GPIO pins? You can access any GPIO pin by going through the Open-Core Protocol
(OCP) port.

Figure 4-2. PRU-ICSS Integration

prl_mil_me0_clic
pri_mid_redink
pri_miid_crs
pri_miio_col
pri_mild_reesr
pri_miid_tuen
pri_miid_fad3
PRLUHCSS pri_mii_tadZ
pri_mid_tad
pri_miid_budl

] pri_mil_mel_dk
OCI';'[;”HI'E‘ pri_miid_modv
A part * pri_miid_nodd
pri_miid_med2

pri_mid_med!
pri_miid_nodd

pri_mdio_data
Mil_RT "E pri_madio_mddk

L4 Fasl E‘

Brdge

z OCF_HFO
=l patertacerocP e
& Master porl)

PRUD Core —*

(BB Program RAM) |4—7{@ pri_mil_ma1_cle

pri_mii1_ndink
Diata RAMD pri_mii1_crs

(BKEB) pri_mill_col

. pri_mil1_moer

- pri_mill_teen

pel_prul_peu_r31[16:0] Enfarsed pri_mil1_tad3
Erl_prud_peu_raof15:0] B GFIO Dafgm1 pri_mii1 ez

pri_miil_fadl
Scralch pri_mil_tadD
oop_dk Fad
uar_ok
- EE —
rsi_main_arst n

L3 Fasi

Async

pri_mil_mrl_dk

Shared RAM
" pri_miil_mdv
{12KB}) pri_mii1 "3
pri_mill_ned2
pri_mii1_rmd1
CFG pri_mill_redd

|||F

pri_gdio_sod

ry pri_edio_laich_in
OCP_HP1 PRU1 Care IrvdLis i a1 pri_edio_data_irout[T:0]

_— a
- i - . E
':I'IM[::'ILWP;ﬁP (BKE Program RAM) (4—» > pEET:;ll:;I "_"'E pe1 ade Tatchd In
1 laichd
(IEP) P acozpnod o

324 lnlercomed Bus

(=]
L3 Fast E
Ei

synol_out

pri_edc_syno_out
prl_prul_peu_r31[160] Erfianced o pri_uaril ofs n
B _prun_peu_rao{150] e urrTo (el 0T wartd_tts_n

pri_uartd_mnd
To Host ARM Infemupts pri_uarid ied

T EOMA Everts
To TSC_ADC Ewent

INTC " eCAP -'E pri_ecapl eoap capin_apwm o

Events from Sekect "
Peripherals i S—

For the availability of all features, see the device features in Chapter 1, Iniroduction.

Fig. 6.1: PRU Integration

The figure above shows we’ve been using the _Enhanced GPIO interface when using pass: [___]R30, but
it also shows you can use the OCP. You get access to many more GPIO pins, but it's a slower access.

158 Chapter 6. Accessing More 1/O

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf

10

1

12

13

14

15

16

17

18

19

20

21

22

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PRU Cookbook

Listing 6.2: gpio.pru0.c

// This code accesses GPIO without using R30 and R31
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include ”prugpio.h”

#define P9 11 (0x1<<30) // Bit position tied.
—~to P9 11 on Black
#define P2_05 (0x1<<30) // Bit position tied.

—~to P2 05 on Pocket

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t *gpio0 = (uint32_t *)GPIOO0;
while (1) {
gpio0 [GPIO_SETDATAOUT] = P9 _11;
__delay_cycles (100000000) ;
gpioO0[GPIO_CLEARDATAOUT] = P9_11;
__delay_cycles (100000000) ;
}
}

gpio.prul.c
This code will toggle P9_11 on and off. Here’'s the setup file.

Listing 6.3: setup.sh
#!/bin/bash

export TARGET=gpio.prul
echo TARGET=$TARGET

Configure the PRU pins based on which Beagle is running
machine=$ (awk '{print S$NF}' /proc/device-tree/model)
echo -n $machine

if [$machine = "Black”]; then
echo ” Found”
pins="P9_11"

elif [Smachine = ”"Blue”]; then
echo ” Found”
pins=""

elif [Smachine = "PocketBeagle”]; then
echo ” Found”
pins="P2_05"

else
echo ” Not Found”
pins=""

fi

for pin in Spins

do
echo $pin
config-pin $pin gpio
config-pin —-g S$pin
done

6.2. Accessing gpio 159

10

11

12

13

PRU Cookbook

setup.sh

Notice in the code config-pin set P9_11 to gpio, not pruout. This is because are using the OCP
interface to the pin, not the usual PRU interface

Set your exports and make

bone$ *source setup.sh*

TARGET=gpio.prul

bone$ *make*

/opt/source/pru-cookbook—code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—~Black, TARGET=gpio.prul

= Stopping PRU O

= copying firmware file /tmp/vsx—-examples/gpio.prul.out to /lib/firmware/
—am335x-prul—fw

write_init_pins.sh

= Starting PRU O

MODE = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN =0

PRU_DIR

/sys/class/remoteproc/remoteprocl

6.2.3 Discussion

When you run the code you see P9_11 toggling on and off. Let's go through the code line-by-line to see
what’s happening.

Table 6.1: gpio.pru0.c line-by-line

Line Explanation
2-5 Standard includes
5 The AM335x has four 32-bit GPIO ports. Lines 55-58 of prugpio.h

define the addresses for each of the ports. You can find these in
Table 2-2 page 180 of the AM335x TRM 180. Look up P9_11 in the
P9 header. Under the _Mode7_ column you see gpio0[30]. This
means P9_11 is bit 30 on GPIO port 0. Therefore we will use GPIO0
in this code. You can also run gpioinfo and look for P9_11.

5 Line 103 of prugpio.h defines the address offset from G/O0 that
will allow us to _clear_any (or all) bits in GPIO port 0. Other archi-
tectures require you to read a port, then change some bit, then
write it out again, three steps. Here we can do the same by writ-
ing to one location, just one step.

5 Line 104 of prugpio.h is like above, but for _setting_ bits.

5 Using this offset of line 105 of prugpio.h lets us just read the bits
without changing them.

7,8 This shifts 0x1 to the 30"~th” bit position, which is the one corre-
sponding to P9_11.

15 Here we initialize gpio0 to point to the start of GPIO port 0’s control
registers.

18

gpioO[GPIO_SETDATAOUT] refers to the SETDATAOUT
register of port 0. Writing to this register turns on the

bits
where 1's are written, but leaves alone the bits where 0’s

are.

19 Wait 100,000,000 cycles, which is 0.5 seconds.
20 This is line 18, but the output bit is set to 0 where 1’s are written.

6.2.4 How fast can it go?

This approach to GPIO goes through the slower OCP interface. If yousetpass: [___]delay_cycles (0)
you can see how fast it is.

160 Chapter 6. Accessing More 1/0

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf

PRU Cookbook

Agilent Technologies TUE JUN 12 14:49:49 2018
nIZ.OOV/ 3] 4] 3% 00s 5000y Auto £ 1.07V

Measure Current i Max Std Dev

Period(1): 80.0ns . . 370.0ns 1.7278ns
Duty(1): 50.0% 49,712% . 90.2% 0.801923%
+Width(1): 40.8ns 39.762ns . 154.0ns 829.96ps
-Width(1); 40.,0ns 40.262ns . 330.0ns 1.9090ns

Period(1): 80.0ns Duty(1): 50.0% +Width(1): 40.0ns -Width{1): 40.0ns
<) Source Select: Measure Settings Clear Meas Statistics
1 -Width -Width ~i ~i ~i

Fig. 6.2: gpio.pru0.c with pass:[__ldelay_cycles(0)

6.2. Accessing gpio 161

PRU Cookbook

The period is 80ns which is 12.MHz. That’s about one forth the speed of the pass: [___]R30 method, but
still not bad.

If you are using an oscilloscope, look closely and you’ll see the following.

WED JUN 13 14:34:03 2018
0.0s 50008 Stop £ 1.07V

“ I

I ‘11' e
5

Period(1): 80.0ns Duty(1): 48.8% +Width(1): 39.0ns -Width{1): 41.0ns

oo Persist Clear Clear &y Grid y Vectors ’ y

w oo Persist Display 33%]

Fig. 6.3: PWM with jitter

The PRU is still as solid as before in its timing, but now it’s going through the OCP interface. This interface is
shared with other parts of the system, therefore the sometimes the PRU must wait for the other parts to finish.
When this happens the pulse width is a bit longer than usual thus adding jitter to the output.

For many applications a few nanoseconds of jitter is unimportant and this GPIO interface can be used. If your
application needs better timing, use the pass: [___]R30 interface.

You have some legacy PRU code that uses UIO instead of remoteproc and you want to switch to UIO.

Edit /boot /uEnt .txt and search for uio. I find

162 Chapter 6. Accessing More 1/0

PRU Cookbook

###pru_uio (4.4.x-ti, 4.9.x-ti, 4.14.x-ti & mainline/bone kernel)
uboot_overlay pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo

Uncomment the uboot line. Look for other lines with uboot_overlay_pru= and be sure they are
commented out.

Reboot your Bone.

bone$ sudo reboot

Check that UIO is running.

bone$ lsmod | grep uio

uio_pruss 16384 0
uio_pdrv_genirg 16384 O
uio 20480 2 uio_pruss,uio_pdrv_genirqg

You are now ready to run the legacy PRU code.

6.4 Converting pasm Assembly Code to clpru

6.4.1 Problem

You have some legacy assembly code written in pasm and it won’t assemble with clpru.

6.4.2 Solution

Generally there is a simple mapping from pasm to clpru. pasm vs. clpru notes what needs to be changed. |
have a less complete version on my elLinux.org site.

6.4.3 Discussion

The clpru assembly can be found in PRU Assembly Language Tools.

6.4. Converting pasm Assembly Code to clpru 163

http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions#pasm_vs._clpru
https://elinux.org/EBC_Exercise_30_PRU_porting_pasm_to_clpru
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf

PRU Cookbook

164 Chapter 6. Accessing More 1/0

Chapter 7

More Performance

So far in all our examples we’ve been able to meet our timing goals by writing our code in the C programming
language. The C compiler does a surprisingly good job at generating code, most the time. However there are
times when very precise timing is needed and the compiler isn’t doing it.

At these times you need to write in assembly language. This chapter introduces the PRU assembler and shows
how to call assembly code from C. Detailing on how to program in assembly are beyond the scope of this text.

The following are resources used in this chapter.

Note: Resources
¢ PRU Optimizing C/C++ Compiler, v2.2, User’'s Guide
* PRU Assembly Language Tools User’s Guide

* PRU Assembly Instruction User Guide

7.1 Calling Assembly from C

7.1.1 Problem

You have some C code and you want to call an assembly language routine from it.

7.1.2 Solution

You need to do two things, write the assembler file and modify the Makefile to include it. For example, let’s
write our own my_delay_cycles routine in in assembly. The intrinsic pass: [__]delay_cycles
must be passed a compile time constant. Our new delay_cycles can take a runtime delay value.

delay-test.pru0.c is much like our other c code, but on line 10 we declare my_delay_cycles and then on
lines 24 and 26 we’ll call it with an argument of 1.

Listing 7.1: delay-test.pru0.c

// Shows how to call an assembly routine with one parameter
#include <stdint.h>

#include <pru_cfg.h>

#include ”"resource_table_empty.h”

#include ”prugpio.h”

// The function is defined in delay.asm in same dir
(continues on next page)

165

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruij2/spruij2.pdf

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PRU Cookbook

(continued from previous page)

// We just need to add a declaration here, the definition can be
// separately linked
extern void my_delay_cycles (uint32_t);

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t gpio = P9_31; // Select which pin to toggle.;
/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
while (1) {
__R30 |= gpio; // Set the GPIO pin to 1
my_delay_cycles (1);
__R30 &= ~gpio; // Clear the GPIO pin
my_delay_cycles (1);
}
t

delay-test.prul.c

delay.pru0.asm is the assembly code.

Listing 7.2: delay.pru0.asm

; This is an example of how to call an assembly routine from C.
g Mark A. Yoder, 9-July-2018

.global my_delay_cycles
my_delay_cycles:

delay:

sub rl4, rld, 1 ; The first argument.
—~1s passed in rl4

gbne delay, rl4, O

Jjmp r3.w2 ; r3 contains the.

—return address

delay.prul.asm

The Makefile hasone addition that needs to be made to compile both delay-test.pru0.c and delay.pru0.asm.
If you look in the local Makefile you'll see:

Listing 7.3: Makefile

include /opt/source/pru-cookbook-code/common/Makefile

Makefile

This Makefle includes a common Makefile at /opt/source/pru-cookbook—code/common/
Makefile, this the Makefile you need to edit. Edit /opt/source/pru—-cookbook—-code/common/
Makefile and go to line 195.

$ (GEN_DIR) /%.out: $(GEN_DIR)/%.0 *$(GEN_DIR)/$(TARGETasm) .o*
@mkdir -p $(GEN_DIR)
@echo 'LD gAu
$(eval $(call target-to-proc, S@))
$(eval $(call proc-to-build-vars, $@))
@$(LD) $@ $” $(LDFLAGS)

Add * (GEN_DIR) /$ (TARGETasm) .o* as shown in bold above. You will want to remove this addition

166 Chapter 7. More Performance

PRU Cookbook

once you are done with this example since it will break the other examples.
The following will compile and run everything.

bone$ config-pin P9_31 pruout

bone$ make TARGET=delay-test.prul TARGETasm=delay.prul
/opt/source/pru-cookbook—-code/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_
—Black, TARGET=delay-test .prul

= Stopping PRU O

= copying firmware file /tmp/vsx—-examples/delay-test.prul.out to /lib/
—firmware/am335x-prul—-fw

write_init_pins.sh

= Starting PRU O

MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN =0

PRU_DIR = /sys/class/remoteproc/remoteprocl

The resulting output is shown in Output of my delay cycles().

= Agilent Technologies MON JUL 09 11:44:21 2018
' B 200v/ § a #+ 00s 5000% Auto f 155V

Measure Current i Std Dev Count
+Width(2): 34.5ns . . 2.1649ns [B31.3k
-Width(2); 30.5ns 17.560ns [B21.4k

+Width(Z). 34.5ns -Width(2): 30.5ns

Clear Meas 1 Clear Meas 2 Clear
+Width(2) -Width(2) All

Fig. 7.1: Output of my_delay_cycles()

Notice the on time is about 35ns and the off time is 30ns.

There is much to explain here. Let’s start with delay.pru0.asm.

7.1. Calling Assembly from C 167

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

PRU Cookbook

Table 7.1: Line-by-line of delay.pru0.asm

Line Explanation

3 Declare my_delay_cycles to be global so the linker can find it.

4 Label the starting point for my_delay_cycles.

5 Label for our delay loop.

6 The first argument is passed in register r14. Page 111 of PRU Optimizing C/C++ Compiler, v2.2, User’s Guide gives the

argument passing convention. Registers r14 to r29 are used to pass arguments, if there are more arguments, the argument
stack (r4) is used. The other register conventions are found on page 108. Here we subtract 1 from r14 and save it back into

rl4.
7 gbne is a quick branch if not equal.
9 Once we’ve delayed enough we drop through the quick branch and hit the jump. The upper bits of register r3 has the return

address, therefore we return to the c code.

Output of my_delay cycles() shows the on time is 35ns and the off time is 30ns. With 5ns/cycle this gives 7
cycles on and 6 off. These times make sense because each instruction takes a cycle and you have, set R30,
jump tomy_delay_cycles, sub, gbne, jmp. Plus the instruction (not seen) that initializes r14 to the
passed value. That's a total of six instructions. The extra instruction is the branch at the bottom of the while
loop.

7.2 Returning a Value from Assembly

7.2.1 Problem

Your assembly code needs to return a value.

7.2.2 Solution
R14 is how the return value is passed back. delay-test2.pru0.c shows the c code.

Listing 7.4: delay-test2.pru0.c

// Shows how to call an assembly routine with a return value
#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”

#include ”prugpio.h”

#define TEST 100

// The function is defined in delay.asm in same dir

// We just need to add a declaration here, the definition can be
// separately linked

extern uint32_t my_delay_cycles (uint32_t);

uint32_t ret;

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)
{
uint32_t gpio = P9_31; // Select which pin to toggle.;

/* Clear SYSCFG[STANDBY_ INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

while (1) {
(continues on next page)

168 Chapter 7. More Performance

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

27

28

29

30

31

32

10

11

12

13

14

15

PRU Cookbook

(continued from previous page)

_ _R30 |= gpio; // Set the GPIO pin to 1
ret = my_delay_cycles (1) ;
__R30 &= ~gpio; // Clear the GPIO pin

ret = my_delay_cycles (1) ;

delay-test2.prul.c

delay2.pru0.asm is the assembly code.

Listing 7.5: delay2.pru0.asm

; This is an example of how to call an assembly routine from C with a return.
—value.
g Mark A. Yoder, 9-July-2018

.cdecls "delay-test2.pru0.c”

.global my_delay_cycles
my_delay_cycles:

delay:

sub rl4, rl4, 1 ; The first argument.
—1s passed in rl4

gbne delay, rl4, O

1di rl4, TEST ; TEST is defined in.

—~delay-test2.c
; rld is the return.
—register

Jjmp r3.w2 ; r3 contains the_
—return address

delay2.pru0.asm

An additional feature is shown in line 4 of delay2.pru0.asm. The .cdecls "delay-test2.prul.
c” says to include any defines from delay-test2.pru0. c In this example, line 6 of delay-test2.pru0.c
#defines TEST and line 12 of delay2.pru0.asm reference it.

7.3 Using the Built-In Counter for Timing

7.3.1 Problem

| want to count how many cycles my routine takes.

7.3.2 Solution

Each PRU has a CYCLE register which counts the number of cycles since the PRU was enabled. They also have
a STALL register that counts how many times the PRU stalled fetching an instruction. cycle.pru0.c - Code to
count cycles. shows they are used.

Listing 7.6: cycle.pru0.c - Code to count cycles.

// Access the CYCLE and STALL registers
#include <stdint.h>
#include <pru_cfg.h>
#include <pru_ctrl.h>
(continues on next page)

7.3. Using the Built-In Counter for Timing 169

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

115

PRU Cookbook

(continued from previous page)

#include ”resource_table_empty.h”
#include ”prugpio.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{

uint32_t gpio = P9_31; // Select which pin to toggle.;

// These will be kept in registers and never written to DRAM

uint32_t cycle, stall;

// Clear SYSCFG[STANDBY INIT] to enable OCP master port

CT_CFG.SYSCFG_bit.STANDBY_INIT = O;

PRUO_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter

__R30 |= gpio; // Set the GPIO pin to.
‘—>1

// Reset cycle counter, cycle is on the right side to force the.
—compiler

// to put it in it's own register

PRUO_CTRL.CYCLE = cycle;

_ _R30 &= ~gpio; // Clear the GPIO pin
cycle = PRUO_CTRL.CYCLE; // Read cycle and store in a register
stall = PRUO_CTRL.STALL; // Ditto for stall

__halt();

cycle.prulO.c

7.3.3 Discission

The code is mostly the same as other examples. cycle and stall end up in registers which we can read
using prudebug. Line-by-line for cycle.pru0.c is the Line-by-line.

Table 7.2: Line-by-line for cycle.pru0.c

Line Explanation

4 Include needed to reference CYCLE and STALL.

16 Declaring cycle and stall. The compiler will optimize these and just keep them in registers. We’ll have to look at the cy-
cle.pru0.Ist file to see where they are stored.

21 Enables CYCLE.

26 Reset CYCLE. It ignores the value assigned to it and always sets it to 0. cycle is on the right hand side to make the compiler
give it its own register.

28, Reads the CYCLE and STALL values into registers.

29

You can see where cycle and stall are stored by looking into /tmp/vsx-examples/cycle.pru0.Ist Lines
113..119.

Listing 7.7: /tmp/vsx-examples/cycle.pru0.Ist Lines 113..119

102 .dwpsn file ”"cycle.pruO.c”,line 23,column 2,is_stmt,isa O
1033 =====——=—————=——=========—==—=================—=========—====—=========
104; 23 | PRUO_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter _

(continues on next page)

170 Chapter 7. More Performance

116

117

118

119

146

147

148

149

150

152

PRU Cookbook

(continued from previous page)

e - -

106 0000000c 200080240002C0 LDI32 r0, 0x00022000 .
< [ALU_PRU] |23]| $0sC1

107 00000014 000000F1002081 LBBO srl, r0, 0, 4 ;o
< [ALU_PRU] |23

108 00000018 0000001FO03ELE1L SET rl, rl, 0x00000003 ;o

— [ALU_PRU] [23|

cycle.pru0.1lst

Here the LDI 32 instruction loads the address 0x22000 into r0. This is the offset to the CTRL registers.
Later in the file we see /tmp/vsx-examples/cycle.pru0.Ist Lines 146..152.

Listing 7.8: /tmp/vsx-examples/cycle.pru0.Ist Lines 146..152

L29pg === csoss s s s s e s s s s s s s sa ==

130; 30 | cycle = PRUO_CTRL.CYCLE; // Read cycle and store in a.
—register

31, -

132 0000002c 000000F10C2081 LBBO &rl, r0, 12, 4 B
< [ALU_PRU] |30| $0scC1

133 .dwpsn file ”"cycle.pruO.c”,line 31,column 2,is_stmt,isa O

134; ————————"—"—"""—"—"—— =~

1352 31 | stall = PRUO_CTRL.STALL; // Ditto for stall -

cycle.pru(O.1lst

The first LBBO takes the contents of rO and adds the offset 12 to it and copies 4 bytes into r1. This points
to CYCLE, so r1l has the contents of CYCLE.

The second LBBO does the same, but with offset 16, which points to STALL, thus STALL is now in r0.

Now fire up prudebug and look at those registers.

bone$ sudo prudebug
PRUO> r
r
r
Register info for PRUO

Control register: 0x00000009

Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_ENABLED, NOT_SLEEPING, .

—~PROC_DISABLED

Program counter: 0x0012
Current instruction: HALT

RO0O: *0x00000005* R0O8: 0x00000200 R16: 0x000003c6 R24: .
—0x00110210
RO1: *0x00000003* R09: 0x00000000 R17: 0x00000000 R25:.
- 0x00000000
R02: 0x000000fc R10: Oxfffdeab7 R18: 0x000003e6 R26: 0x6e616843
R0O3: 0x0004272c R11: 0x5fac6373 R19: 0x30203020 R27: 0x206c656e
R04: Oxffffffff R12: Ox59bfeafc R20: 0x0000000a R28: 0x00003033
RO5: 0x00000007 R13: Oxadcl9eaf R21: 0x00757270 R29: 0x02100000
R06: 0xefd30a00 R14: 0x00000005 R22: 0x0000001e R30: 0xa03f9990
RO7: 0x00020024 R15: 0x00000003 R23: 0x00000000 R31: 0x00000000

So cycleis 3 and stall is 5. It must be one cycle to clear the GPIO and 2 cycles to read the CYCLE

7.3. Using the Built-In Counter for Timing 171

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

PRU Cookbook

register and save it in the register. It's interesting there are 5 stall cycles.

If you switch the order of lines 30 and 31 you’'ll see cycleis 7 and stall is 2. cycle now includes the
time needed to read stall and stall no longer includes the time to read cycle.

7.4 Xout and Xin - Transferring Between PRUs

7.4.1 Problem

| need to transfer data between PRUs quickly.

7.4.2 Solution

Thepass:[__]xout () andpass: [__]xin () intrinsics are able to transfer up to 30 registers between
PRU 0 and PRU 1 quickly. xout.pru0.c shows how xout () running on PRU 0 transfers six registers to PRU 1.

Listing 7.9: xout.pru0.c

// From: http://git.ti.com/pru-software-support-package/pru-software—-support—
wpackage/trees/master/examples/am335x/PRU_Direct_Connect0

#include <stdint.h>

#include <pru_intc.h>

#include ”"resource_table_prul.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

typedef struct {
uint32_t regh;
uint32_t regb;
uint32_t reg’;
uint32_t reg8§;
uint32_t reg9;
uint32_t reglO;

} bufferData;

bufferData dmemBuf;

/* PRU-to—ARM interrupt */
#define PRU1_PRUO_INTERRUPT (18)
#define PRUO_ARM INTERRUPT (19+16)

void main (void)

{
/* Clear the status of all interrupts */
CT_INTC.SECRO = OxFFFFFFFF;
CT_INTC.SECR1 = OxFFFFFFFF;

/* Load the buffer with default values to transfer */
dmemBuf.regb = OxDEADBEEF;

dmemBuf.reg6 = OxAAAAAAAA;

dmemBuf.reg? 0x12345678;

dmemBuf.reg8 0xBBBBBBBB;

dmemBuf.reg9 = 0x87654321;

dmemBuf.regl0 = 0xCCCCCCCC;

/* Poll until R31.30 (PRUO interrupt) is set
* This signals PRUl is initialized */
while ((__R31 & (1<<30)) == 0) {
(continues on next page)

172 Chapter 7. More Performance

41

42

43

44

45

46

47

48

49

50

51

52

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

PRU Cookbook

(continued from previous page)

}

/* XFR registers R5-R10 from PRUO to PRU1 */
/* 14 is the device_id that signifies a PRU to PRU transfer */
__xout (14, 5, 0, dmemBuf);

/* Clear the status of the interrupt */
CT_INTC.SICR = PRU1_PRUO_INTERRUPT;

/* Halt the PRU core */
__halt();

xout .prul.c

PRU 1 waits at line 41 until PRU 0 signals it. xin.prul.c sends an interrupt to PRU 0 and waits for it to send the
data.

Listing 7.10: xin.prul.c

// From: http://git.ti.com/pru-software-support-package/pru-software—-support—
—package/trees/master/examples/am335x/PRU_Direct_Connect]1

#include <stdint.h>

#include ”"resource_table_empty.h”

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

typedef struct {
uint32_t regb;
uint32_t regb;
uint32_t reg’;
uint32_t reg8§;
uint32_t reg9;
uint32_t reglQ;

} bufferData;

bufferData dmemBuf;

/* PRU-to—-ARM interrupt */
#define PRUI1_PRUO_INTERRUPT (18)
#define PRUI1_ARM INTERRUPT (20+16)

void main (void)

{
/* Let PRUO know that I am awake */
__R31 = PRU1_PRUO_INTERRUPT+16;
/* XFR registers R5-R10 from PRUO to PRU1 */
/* 14 is the device_id that signifies a PRU to PRU transfer */
_ xin (14, 5, 0, dmemBuf);
/* Halt the PRU core */
__halt();
t

xin.prul.c

Use prudebug to see registers R5-R10 are transferred from PRU 0 to PRU 1.

PRUO> r
Register info for PRUO
(continues on next page)

7.4. Xout and Xin - Transferring Between PRUs 173

PRU Cookbook

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED,
—~PROC_DISABLED
Program counter: 0x0026

Current instruction: HALT
R0O0: 0x00000012 *R08: Oxbbbbbbbb* R16: 0x000003c6
—0x00110210
RO1: 0x00020000 *R09: 0x87654321%* R17: 0x00000000
—0x00000000
RO2: 0x000000e4 *RI10s Oxcececceee™ R18: 0x000003e6
—~0x6e616843
R03: 0x0004272c R11: Ox5fac6373 R19: 0x30203020
RO4: Oxffffffff R12: Ox59bfeafc R20: 0x0000000a
R05: Oxdeadbeef R13: Oxadcl9eaf R21: 0x00757270
—0x02100000
R06: Oxaaaaaaaa R14: 0x00000005 R22: 0x0000001e
—0xa03f9990
R07: 0x12345678 R15: 0x00000003 R23: 0x00000000
—~0x00000000
PRUO> *pru 1*
pru 1
Active PRU is PRUI1.
PRU1> *r*
r
Register info for PRU1
Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED,
—~PROC_DISABLED
Program counter: 0x000b
Current instruction: HALT
R0O0O: 0x00000100 *R08: Oxbbbbbbbb* R16: 0xe9da228b
—0x28113189
RO1: Oxed48cdblf *R09: 0x87654321* R17: 0x66621777
—0xddd29abl
R0O2: 0x000000e4 *RIL0s Oxceceecccee™ R18: 0x661f83ea
—0xcflcd4ab
R03: 0x0004db97 R11: O0xdec387d5 R19: 0xa85adb78
R04: 0xa90e496f R12: Oxbeac3878 R20: 0x048fff22
R05: Oxdeadbeef R13: 0x5777b488 R21: 0xa32977c7
—0xae96b530
R06: Oxaaaaaaaa R14: 0xffa60550 R22: 0x99fbl123e
—0x52c42a0d
R07: 0x12345678 R15: Oxdeb2142d R23: 0xa353129d
—0x00000000

7.4.3 Discussion

xout.pru0.c Line-by-line shows the line-by-line for xout .pru0l.c

(continued from previous page)

NOT_SLEEPING,

R24:.
R25:.
R26:.
R27: 0x206c656e
R28: 0x00003033
R29:.

R30: .

R31:.

NOT_SLEEPING,

R24: .
R25:.
R26: .
R27: 0x70af2d02
R28: 0x7465f5f0
R295u

R30:._

R31:.

174

Chapter 7. More Performance

10

11

12

13

15

16

17

19

20

21

22

23

PRU Cookbook

Table 7.3: xout.pru0.c Line-by-line

Line Explanation

4 A different resource so PRU 0 can receive a signal from PRU 1.

9-16 dmemBuf holds the data to be sent to PRU 1. Each will be transferred to its corresponding register by xout ().

21- Define the interrupts we’re using.

22

27- Clear the interrupts.

28

31- Initialize dmemBuf with easy to recognize values.

36

40 Wait for PRU 1 to signal.

45 pass: [___]xout () does a direct transfer to PRU 1. Page 92 of PRU Optimizing C/C++ Compiler, v2.2, User’s Guide shows
how to use xout(). The first argument, 14, says to do a direct transfer to PRU 1. If the first argument is 10, 11 or 12, the
data is transferred to one of three scratchpad memories that PRU 1 can access later. The second argument, 5, says to start
transferring with register r5 and use as many registers as needed to transfer all of dmemBuf. The third argument, 0, says
to not use remapping. (See the User’s Guide for details.) The final argument is the data to be transferred.

48 Clear the interrupt so it can go again.

xin.prul.c Line-by-line shows the line-by-line for xin.prul.c.

Table 7.4: xin.prul.c Line-by-line

Line Explanation

8-15 Place to put the received data.

26 Signal PRU 0

30 Receive the data. The arguments are the same as xout(), 14 says to get the data directly from PRU 0. 5 says to start with

register r5. dmemBuf is where to put the data.

If you really need speed, considering using pass: [__]xout () andpass: [__]xin () in assembly.

Copyright
Listing 7.11: copyright.c

J*

* Copyright (C) 2015 Texas Instruments Incorporated — http://www.ti.com/

*

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

£ * Redistributions of source code must retain the above copyright

% notice, this 1list of conditions and the following disclaimer.

*

£ * Redistributions in binary form must reproduce the above copyright
% notice, this 1list of conditions and the following disclaimer in..
—~the

* documentation and/or other materials provided with the

& distribution.

*

* * Neither the name of Texas Instruments Incorporated nor the names.
—~of

its contributors may be used to endorse or promote products.

—~derived

*

* % % %

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

(continues on next page)

7.4. Xout and Xin - Transferring Between PRUs 175

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

24

25

26

27

28

29

30

31

32

33

PRU Cookbook

(continued from previous page)

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

copyright.c

176

Chapter 7. More Performance

Chapter 8

Moving to the BeagleBone Al

So far all our examples have focussed mostly on the BeagleBone Black and PocketBeagle. These are both
based on the am335x chip. The new kid on the block is the BeagleBone Al which is based on the am5729. The
new chip brings with it new capabilities one of which is four PRUs. This chapter details what changes when
moving from two to four PRUs.

The following are resources used in this chapter.

Note: Resources
e AM572x Technical Reference Manual (Al)

* BeagleBone Al PRU pins

8.1 Moving from two to four PRUs

8.1.1 Problem

You have code that works on the am335x PRUs and you want to move it to the am5729 on the Al.

8.1.2 Solution

Things to consider when moving to the Al are:
* Which pins are you going to use
¢ Which PRU are you going to run on

Knowing which pins to use impacts the PRU you'll use.

8.1.3 Discission

The various System Reference Manuals (SRM’s) list which pins go to the PRUs. Here the tables are combined
into one to make it easier to see what goes where.

177

http://www.ti.com/lit/pdf/spruhz6l
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

abed 1xau uo senuuod

0€'1d
CE'Td

v0'1d
GE'Td
10°2¢d
GE'ed

€g'ed
ve¢ed

6¢'1d
8¢'¢d
veed
T€'Td
0g'ed
e
€€'Td

0T 8d
2y 6d
97 6d
0€ 6d
62 6d
1€ 6d
LT 6d
8T 6d
1€ 6d
6 8d
SZ 6d

Z€ 8d

8 8d/9% 8d

0€ 8d
6¢ 8d
87 8d
L7 8d

€1 6d/LT 8d

1T 6d
Sv 8d
Z€ 8d

¥ 8d/1€ 8d
€ 8d/€€ 8d
27 8d/s€ 8d
€2 8d/vE 8d
9 8d/9€ 8d
S 8d/8€ 8d
¥Z 8d/LE 8d
GZ 8d/0Yv 8d
0Z 8d/6€ 8d
12 8d/zy 8d

v 8d

9¢'Td uid 39%20d pv 8d uld Znyd IV

9T 6d
¥T 6d

L2 6d
Zv 6d
¥T 8d

€T 8d
6T 8d
8T 8d

1 6d

6T 6d
0Z 6d

97 6d

ST 6d
1T 8d
21 8d

uld TNYd IV

0Z 8d
1Z 8d
0€ 8d
87 8d
67 8d
L2 8d
0¥ 8d
6€ 8d
Zv 8d
v 8d
v 8d
€Y 8d
9% 8d
St 8d

[(un9z 6d (UnTt 6d
[(uNST 8d (INO)TT 8d
[(u)9T 8d (AN0)ZT 8d

G2 6d
16 6d
LT 6d
26 6d
87 6d
0€ 6d
62 6d

1€ 6d uid oelg

PRU Cookbook

saweu uid 03 suolyisod 31q buiddely :1°g 9jqeL

O - N M< N
L e B B B |

Lo T B O O O O O e O e O e O e O e B I O B |

O -H N MS<T N O™~ 0O
Chapter 8. Moving to the BeagleBone Al

— N M < N O~ 00 o0 O
Lo B B B T B I B B R}

[¢)]
—
O O OO OO0 000000000 OoOOoOOoOOoOo

M ANMS 1N O™~ 00O

178

PRU Cookbook

€Y 8d
9% 8d
St 8d
L2 8d

L 8d

9T 8d
9Z 8d
ST 8d

(u)9z 6d

61
6T
81
LT
9T

Lo I e B B I |

obed snoinaid woly panunuod - |'g d|qe |

179

8.1. Moving from two to four PRUs

PRU Cookbook

The pins in bold are already configured as pru pins. See Seeing how pins are configured to see what’s currently
configured as what. See Configuring pins on the Al via device trees to configure pins.

8.2 Seeing how pins are configured

8.2.1 Problem

You want to know how the pins are currently configured.

8.2.2 Solution

The show—-pins.pl command does what you want, but you have to set it up first.

bone$ cd ~/bin
bone$ 1n -s /opt/scripts/device/bone/show-pins.pl

This creates a symbolic link to the show—pins.pl command thatis rather hidden away. The link is put in the
bin directory which is in the default command SPATH. Now you can run show-pins.pl from anywhere.

bone$ *show-pins.pl*

P9.19%a 16 R6 7 fast rx wup 12c4_scl
P9.20a 17 T9 7 fast rx wup 12c4_sda
P8.35b 57 AD9 e fast down gpio3_0
P8.33b 58 AF9 e fast down gpio3_1

Here yousee P9.19a and P9.20a are configured for i2c with pull up resistors. The P8 pins are configured
as gpio with pull down resistors. They are both on gpio port 3. P8 . 35b is bit 0 while P8 . 33b is bit 1. You
can find which direction they are set by using gpioinfo and the chip number. Unfortunately you subtract
one from the port number to get the chip number. So P8 . 35b is on chip number 2.

bone$ *gpioinfo 2%*

line 0: unnamed unused *input* active-high
line 1: unnamed unused *input* active-high
line 2 unnamed unused input active-high
line 3: unnamed unused input active-high
line 4: unnamed unused input active-high

Here we see both (lines 0 and 1) are set to input.

Adding —v gives more details.
bone$ *show-pins.pl -v*

sysboot 14 14 H2

f fast down sysbootl4

sysboot 15 15 H3 f fast down sysbootl15
P9.19%a 16 R6 7 fast rx wup 12c4_scl
P9.20a 17 T9 7 fast rx up 1i2c4_sda

18 To £ fast down..
—~Driver off

19 T7 £ fast down.
—~Driver off
bluetooth in 20 P6 8 fast rx uarto_rxd -
—mmc@480d1000 (wifibt_extra_pins_default)
bluetooth out 21 R9 8 fast rx uart6_txd -

—mmc@480d1000 (wifibt_extra_pins_default)

180 Chapter 8. Moving to the BeagleBone Al

PRU Cookbook

The best way to use show—pins.pl is with grep. To see all the pru pins try:

bone$ *show-pins.pl | grep —-i pru | sort*

P8.13 100 D3 c¢ fast rx prl _prul gpi7

P8.15b 109 A3 d fast down prl_prul_gpolé6
P8.16 111 B4 d fast down prl_prul_gpol8
P8.18 98 F5 ¢ fast rx prl_prul_gpib

P8.19 99 E6 c fast rx prl_prul_gpi6

P8.26 110 B3 d fast down prl_prul_gpol7
P9.16 108 C5 d fast down prl_prul_gpol5
P9.19% 95 F4 c fast rx up prl_prul_gpi2

P9.20b 94 D2 ¢ fast rx up prl_prul gpil

Here we have nine pins configured for the PRU registers R30 and R31. Five are input pins and four are out.

8.3 Configuring pins on the Al via device trees

8.3.1 Problem

| want to configure another pin for the PRU, but | get an error.

bone$ *config-pin P9_31 pruout*

ERROR: open () for /sys/devices/platform/ocp/ocp:P9_31_pinmux/state failed, .
—No such file or directory

8.3.2 Solution

The pins on the Al must be configure at boot time and therefor cannot be configured with config-pin.
Instead you must edit the device tree.

8.3.3 Discission

Suppose you want to make P9_31 a PRU output pin. First go to the am5729 System Reference Manual and
lookup P9_31.

Tip: The BeagleBone Al PRU pins table may be easier to use.

P9_31 appears twice, as P9_31a and P9_31b. Either should work, let’s pick P9_31a.

Warning: When you have two internal pins attached to the same header (either P8 or P9) make sure only
one is configured as an output. If both are outputs, you could damage the Al.

We see that when P9_31a is set to MODE1 3 it will be a PRU out pin. MODE12 makes it a PRU in pin. It
appears at bit 10 on PRU2_1.

Next, find which kernel you are running.

bone$ uname -a
Linux ai 4.14.108-ti-r131 #lbuster SMP PREEMPT Tue Mar 24 19:18:36 UTC 2020.
—armv7l GNU/Linux

I’'m running the 4.14 version. Now look in /opt /source for your kernel.

8.3. Configuring pins on the Al via device trees 181

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/System-Reference-Manual
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PRU Cookbook

bone$ cd /opt/source/

bone$ 1s

adafruit-beaglebone-io-python dtb-5.4-ti rcpy

BBIOConfig librobotcontrol u-boot_v2019.04
bb.org-overlays list.txt u-boot_v2019.07-rc4
dtb-4.14-tix pyctrl

dtb-4.19-ti py-uio

am5729-beagleboneai.dts is the file we need to edit. Search for P9_31. You'll see:

DRA7XX_CORE_TIOPAD (0x36DC, MUX_MODE14) // B13: P9.30: mcaspl_axrl0.off //
DRA7XX_CORE_IOPAD (0x36D4, *MUX_MODE13*) // B12: *P9.31la*: mcaspl_axr8.off //
DRA7XX_CORE_TIOPAD (0x36A4, MUX_MODE14) // Cl4: P9.31b: mcaspl_aclkx.off //

Change the MUX_MODE14 to MUX_MODE1 3 for output, or MUX_MODE12 for input.

Compile and install. The first time will take a while since it recompiles all the dts files.

bone$ make

DTC src/arm/am335x-s150.dtb

DTC src/arm/am5729-beagleboneai.dtb
DTC src/arm/am335x-nano.dtb

bone$ sudo make install

'src/arm/am5729-beagleboneai.dtb' -> '/boot/dtbs/4.14.108-ti-r131/am5729-
—beagleboneai.dtb’

bone$ reboot

bone$ *show-pins.pl -v | sort | grep -i pru*

P8.13 100 D3 c¢ fast rx prl_prul_gpi7
P8.15b 109 A3 d fast down prl_prul_gpol6
P8.16 111 B4 d fast down prl_prul_gpol8
P8.18 98 F5 ¢ fast rx prl_prul_gpib
P8.19 99 E6 ¢ fast rx prl_prul_gpi6
P8.26 110 B3 d fast down prl_prul_gpol7
P9.16 108 C5 d fast down prl_prul_gpol5
P9.19% 95 F4 c fast rx up prl_prul_gpi2
P9.20b 94 D2 c¢ fast rx up prl_prul _gpil
P9.31a 181 B12 d fast down pr2_prul_gpolO

There itis. P9_31 is now a PRU output pin on PRU1_0, bit 3.

8.4 Using the PRU pins

8.4.1 Problem

Once | have the PRU pins configured on the Al how do | use them?

8.4.2 Solution

In Configuring pins on the Al via device trees we configured P9_31a to be a PRU pin. show-pins.pl
showed that it appears at pr2_prul_gpol0, which means pru2_1 accesses it using bit 10 of register R30.

182 Chapter 8. Moving to the BeagleBone Al

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

PRU Cookbook

8.4.3 Discission

It's easy to modify the pwm example from PWM Generator to use this pin. First copy the example you want
to modify to pwml .pru2_1.c. The pru2_1 in the file name tells the Makefile to run the code on pru2_1.

pwml.pru2_1.c shows the adapted code.

Listing 8.1: pwml.pru2_1.c

#include <stdint.h>

#include <pru_cfg.h>

#include ”resource_table_empty.h”
#include ”prugpio.h”

#define P9 31 (0x1<<10)

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main (void)

{
uint32_t gpio = P9_31; // Select which pin to toggle.;
/* Clear SYSCFG[STANDBY INIT] to enable OCP master port */
CT_CFG.SYSCFG_bit.STANDBY_INIT = O;
while (1) {
__R30 |= gpio; // Set the GPIO pin to 1
__delay_cycles (100000000) ;
__R30 &= ~gpio; // Clear the GPIO pin
__delay_cycles (100000000) ;
}
h

pwml.pru2_1.c

One line 6 P9_31 is defined as (0Ox1:ref: 10), which means shift 1 over by 10 bits. That’s the only

change needed. Copy the local Makefile to the same directory and compile and run.

bone$ make TARGET=pwml.pru2_1

Attach an LED to P9__31 and it should be blinking.

8.4. Using the PRU pins

183

PRU Cookbook

184 Chapter 8. Moving to the BeagleBone Al

Chapter 9

PRU Projects

Users of Tl processors with PRU-ICSS have created application for many different uses. A list of a few are shared
below. For additional support resources, software and documentation visit the PRU-ICSS wiki.

LEDscape

Description: BeagleBone Black cape and firmware for driving a large number of WS281x LED strips.
Type: Code Library Documentation and example projects.
References:

e https://github.com/osresearch/LEDscape http://trmm.net/LEDscape

LDGraphy

Description: Laser direct lithography for printing PCBs.
Type: Code Library and example project.
References:

e https://github.com/hzeller/Idgraphy/blob/master/README.md

PRdUino

Description: This is a port of the Energia platform based on the Arduino framework allowing you to use Arduino
software libraries on PRU.

Type: Code Library

References:

e https://github.com/lucas-ti/PRdUino

DMX Lighting

Description: Controlling professional lighting systems
Type: Project Tutorial Code Library
References:

* https://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/

185

https://github.com/osresearch/LEDscape
http://trmm.net/LEDscape
https://github.com/hzeller/ldgraphy/blob/master/README.md
https://github.com/lucas-ti/PRdUino
https://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/

PRU Cookbook

e https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/
first-steps-with-the-beaglebone-pru/

¢ https://github.com/boxysean/beaglebone-DMX

Interacto

Description: A cape making BeagleBone interactive with a triple-axis accelerometer, gyroscope and magne-
tometer plus a 640 x 480/30 fps camera. All sensors are digital and communicate via I?C to the BeagleBone.
The camera frames are captured using the PRU-ICSS. The sensors on this cape give hobbyists and students a
starting point to easily build robots and flying drones.

Type: Project 1 Project 2 Code Library
References:
¢ https://beagleboard.org/CapeContest/entries/Interacto/

* https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/
interacto/

e https://github.com/cclark2/interacto_bbone_cape

Replicape: 3D Printer

Description: Replicape is a high end 3D-printer electronics package in the form of a Cape that can be placed
on a BeagleBone Black. It has five high power stepper motors with cool running MosFets and it has been
designed to fit in small spaces without active cooling. For a Replicape Daemon that processes G-code, see the
Redeem Project

Type: Project Code Library
References:
e http://www.thing-printer.com/product/replicape/

* https://bitbucket.org/intelligentagent/replicape/

PyPRUSS: Python Library

Description: PyPRUSS is a Python library for programming the PRUs on BeagleBone (Black)
Type: Code Library

References:
https://github.com/MuneebMohammed/pypruss

Geiger

Description: The Geiger Cape, created by Matt Ranostay, is a design that measures radiation counts from
background and test sources by utilising multiple Geiger tubes. The cape can be used to detect low-level
radiation, which is needed in certain industries such as security and medical.

Type: Project 1 Project 2 Code Library
References:
e http://beagleboard.org/CapeContest/entries/Geiger+Cape/

¢ http://elinux.org/BeagleBone/GeigerCapePrototype

Note: #TODO#: the git repo was taken down

186 Chapter 9. PRU Projects

https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/
https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/
https://github.com/boxysean/beaglebone-DMX
https://beagleboard.org/CapeContest/entries/Interacto/
https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/interacto/
https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/interacto/
https://github.com/cclark2/interacto_bbone_cape
http://www.thing-printer.com/product/replicape/
https://bitbucket.org/intelligentagent/replicape/
https://github.com/MuneebMohammed/pypruss
http://beagleboard.org/CapeContest/entries/Geiger+Cape/
http://elinux.org/BeagleBone/GeigerCapePrototype

PRU Cookbook

Servo Controller Foosball Table

Description: Used for ball tracking and motor control
Type: Project Tutorial Code Library
References:

* http://www.elementl4.com/community/community/knode/single-board _computers/next-
gen_beaglebone/blog/2013/07/17/hackerspace-challenge-leeds-only-pru-can-make-the-leds-
bright

* https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWIpxQTFWbGh6RGJHUEE&
output=html

¢ https://github.com/pbrook/pypruss

Imaging with connected camera

Description: Low resolution imaging ideal for machine vision use-cases, robotics and movement detection
Type: Project Code Library
References:

e http://www.elementl4.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/18/bbb-imaging-with-a-pru-connected-camera

Computer Numerical Control (CNC) Translator

Description: Smooth stepper motor control; real embedded version of LinuxCNC
Type: Tutorial Tutorial
References:

e http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/ http://bb-lcnc.blogspot.com/
p/machinekit_16.html

Robotic Control

Description: Chubby SpiderBot

Type: Project Code Library Project Reference

References:
e http://www.youtube.com/watch?v=dEes9k7-DYY
e http://www.youtube.com/watch?v=]Xyewd98e9Q

e http://www.ti.com/lit/wp/spry235/spry235.pdf

Note: #TODO#: The Chubbyl vl repo on github.com for user cagdasc was taken down.

Software UART

Description: Soft-UART implementation on the PRU of AM335x
Type: Code Library Reference

References:

187

http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://github.com/pbrook/pypruss
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera
http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://www.youtube.com/watch?v=dEes9k7-DYY
http://www.youtube.com/watch?v=JXyewd98e9Q
http://www.ti.com/lit/wp/spry235/spry235.pdf

PRU Cookbook

* https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/
PRU-ICSS/Linux_Drivers/pru-sw-uart.html

Deviant LCD

Description: PRU bit-banged LCD interface @ 240x320
Type: Project Code Library
References:
e http://www.beagleboard.org/CapeContest/entries/DeviantLCD/

¢ https://github.com/cclark2/deviantlcd_bbone _cape

Nixie tube interface

Description:
Type: Code Library
References:

¢ https://github.com/mranostay/beagle-nixie

Thermal imaging camera

Description: Thermal camera using BeagleBone Black, a small LCD, and a thermal array sensor
Type: Project Code Library
References:

e https://elementl4.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/06/07/bbb-building-a-thermal-imaging-camera

Sine wave generator using PWMs

Description: Simulation of a pulse width modulation
Type: Project Reference Code Library
References:

e http://elinux.org/ECE497 BeagleBone PRU

* https://github.com/millerap/AM335x_PRU_BeagleBone

Emulated memory interface

Description: ABX loads amovie into the BeagleBone’'s memory and then launches the memory emulator on
the PRU sub-processor of the BeagleBone’s ARM AM335x

Type: Project

References:

e https://github.com/lybrown/abx

188 Chapter 9. PRU Projects

https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
http://www.beagleboard.org/CapeContest/entries/DeviantLCD/
https://github.com/cclark2/deviantlcd_bbone_cape
https://github.com/mranostay/beagle-nixie
https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
http://elinux.org/ECE497_BeagleBone_PRU
https://github.com/millerap/AM335x_PRU_BeagleBone
https://github.com/lybrown/abx

PRU Cookbook

6502 memory interface

Description: System permitting communication between Linux and 6502 processor
Type: Project Code Library
References:
* http://elinux.org/images/a/ac/What's_Old_Is New- A 6502-based Remote_Processor.pdf

e https://github.com/lybrown/abx

JTAG/Debug

Description: Investigating the fastest way to program using JTAG and provide for debugging facilities built
into the BeagleBone.

Type: Project

References:

* http://beagleboard.org/project/PRUJTAG/

High Speed Data Acquistion

Description: Reading data at high speeds
Type: Reference
References:

* http://www.elementl4.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/04/bbb-high-speed-data-acquisition-and-web-based-ui

Prufh (PRU Forth)

Description: Forth Programming Language and Compiler. It consists of a compiler, the forth system itself,
and anoptional program for loading and communicating with the forth code proper.

Type: Compiler

References:

* https://github.com/biocode3D/prufh

VisualPRU

Description: VisualPRU is a minimal browser-based editor and debugger for the BeagleBone PRUs. The app
runs from a local server on the BeagleBone.

Type: Editor and Debugger

References:

¢ https://github.com/mmcdan/visualpru

libpruio

Description: Library for easy configuration and data handling at high speeds. This library can configure and
control the devices from single source (no need for further overlays or the device tree compiler)

Type: Documentation

189

http://elinux.org/images/a/ac/What's_Old_Is_New-_A_6502-based_Remote_Processor.pdf
https://github.com/lybrown/abx
http://beagleboard.org/project/PRUJTAG/
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
https://github.com/biocode3D/prufh
https://github.com/mmcdan/visualpru

PRU Cookbook

References:
e http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html

e Library http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.htmI{[}(German)]

BeagleLogic

Description: 100MHz 14channel logic analyzer using both PRUs (one to capture and one to transfer the data)
Type: Project
References:

* http://beaglelogic.net

BeaglePilot

Description: Uses PRUs as part of code for a BeagleBone based autopilot
Type: Code Library
References:

* https://github.com/BeaglePilot/beaglepilot

PRU Speak

Description: Implements BotSpeak, a platform independent interpreter for tools like Labview, on the PRUs
Type: Code Library
References:

e https://github.com/deepakkarki/pruspeak

190 Chapter 9. PRU Projects

http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html
http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.html{[}(German
http://beaglelogic.net
https://github.com/BeaglePilot/beaglepilot
https://github.com/deepakkarki/pruspeak

	Case Studies - Introduction
	Robotics Control Library
	Controlling Eight Servos
	Problem
	Solution
	Discussion
	PRU register to pin table

	Controlling Individual Servos
	Problem
	Solution

	Controlling More Than Eight Channels
	Problem
	Solution

	Reading Hardware Encoders
	Problem
	Solution
	eQEP to pin mapping
	Reading PRU Encoder

	Problem
	Solution

	BeagleLogic – a 14-channel Logic Analyzer
	Problem
	Solution
	Discussion

	NeoPixels – 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)
	Problem
	Solution
	Hardware
	Software Setup
	Controlling NeoPixels

	RGB LED Matrix – No Integrated Drivers (Falcon Christmas)
	Problem
	Solution
	Hardware
	Software
	xLights - Creating Content for the Display
	Setting Up E1.31 on the Bone
	Testing the xLights Connection
	A Simple xLights Sequence
	Saving a Sequence and Playing it Standalone
	simpPRU – A python-like language for programming the PRUs
	Detected TI AM335x PocketBeagle
	MachineKit

	ArduPilot

	Getting Started
	Selecting a Beagle
	Problem
	Solution
	Discussion
	BeagleBone Black
	BeagleBone Blue
	PocketBeagle
	BeagleBone AI

	Installing the Latest OS on Your Bone
	Problem
	Solution

	Flashing a Micro SD Card
	Problem
	Solution

	Visual Studio Code IDE
	Problem
	Solution

	Getting Example Code
	Problem
	Solution

	Blinking an LED
	Problem
	Solution
	Running Code on the Black or Pocket
	Running Code on the AI

	Running a Program; Configuring Pins
	Getting Example Code
	Problem
	Solution

	Compiling with clpru and lnkpru
	Problem
	Solution
	code tools

	Making sure the PRUs are configured
	Problem
	Solution

	Compiling and Running
	Problem
	Solution
	Discussion

	Stopping and Starting the PRU
	Problem
	Solution

	The Standard Makefile
	Problem
	Solution
	Discussion

	The Linker Command File - am335x_pru.cmd
	Problem
	Solution
	Discussion
	AM335x_PRU.cmd important things

	Loading Firmware
	Problem
	Solution
	Discussion
	Finding the PRUs

	Configuring Pins for Controlling Servos
	Problem
	Solution
	Discussion

	Configuring Pins for Controlling Encoders
	Problem
	Solution
	Discussion

	Debugging and Benchmarking
	Debugging via an LED
	Problem
	Solution
	Discussion

	dmesg Hw
	Problem
	Solution

	dmesg -Hw
	prudebug - A Simple Debugger for the PRU
	Problem
	Solution
	Discussion

	UART
	Problem
	Solution
	Discussion
	Details
	config-pin
	Copyright

	Building Blocks - Applications
	Memory Allocation
	Problem
	Solution
	Discussion

	Auto Initialization of built-in LED Triggers
	Problem
	Solution
	Discussion

	PWM Generator
	Problem
	Solution
	Discussion

	Controlling the PWM Frequency
	Problem
	Solution

	Loop Unrolling for Better Performance
	Problem
	Solution
	Discussion

	Making All the Pulses Start at the Same Time
	Problem
	Solution
	Discussion

	Adding More Channels via PRU 1
	Problem
	Solution
	Discussion

	Synchronizing Two PRUs
	Problem
	Solution
	Discussion

	Reading an Input at Regular Intervals
	Problem
	Solution
	Discussion

	Analog Wave Generator
	Problem
	Solution
	Discussion

	WS2812 (NeoPixel) driver
	Problem
	Solution
	Discussion

	Setting NeoPixels to Different Colors
	Problem
	Solution
	Discussion

	Controlling Arbitrary LEDs
	Problem
	Solution
	Neo3 Video
	Discussion

	Controlling NeoPixels Through a Kernel Driver
	Problem
	Solution
	Discussion
	Switching from pru0 to pru1 with rpmsg_pru

	RGB LED Matrix - No Integrated Drivers
	Problem
	Solution
	Discussion
	Getting More Colors

	Compiling and Inserting rpmsg_pru
	Problem
	Solution

	Copyright

	Accessing More I/O
	Editing /boot/uEnv.txt to Access the P8 Header on the Black
	Problem
	Solution

	Accessing gpio
	Problem
	Solution
	Discussion
	How fast can it go?

	Configuring for UIO Instead of RemoteProc
	Problem
	Solution

	Converting pasm Assembly Code to clpru
	Problem
	Solution
	Discussion

	More Performance
	Calling Assembly from C
	Problem
	Solution
	Discission

	Returning a Value from Assembly
	Problem
	Solution

	Using the Built-In Counter for Timing
	Problem
	Solution
	Discission

	Xout and Xin - Transferring Between PRUs
	Problem
	Solution
	Discussion
	Copyright

	Moving to the BeagleBone AI
	Moving from two to four PRUs
	Problem
	Solution
	Discission

	Seeing how pins are configured
	Problem
	Solution

	Configuring pins on the AI via device trees
	Problem
	Solution
	Discission

	Using the PRU pins
	Problem
	Solution
	Discission

	PRU Projects

